• Title/Summary/Keyword: 3D Mesh Model

Search Result 309, Processing Time 0.039 seconds

Use of 3D Printing Model for the Management of Fibrous Dysplasia: Preliminary Case Study

  • Choi, Jong-Woo;Jeong, Woo Shik
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.36-38
    • /
    • 2016
  • Fibrous dysplasia is a relatively rare disease but the management would be quite challenging. Because this is not a malignant tumor, the preservation of the facial contour and the various functions seems to be important in treatment planning. Until now the facial bone reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for facial bone reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile, various types of allogenic and alloplastic materials have been also used. However, facial bone reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original maxillary anatomy as possible using the 3D printing model, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we molded Titanium mesh to reconstruct three-dimensional maxillary structure during the operation. This prefabricated Titanium-mesh implant was then inserted onto the defected maxilla and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be successful in this patient. Individualized approach for each patient could be an ideal way to restore the facial bone.

On Reasonable Boundary Condition for Inclined Seabed/Structure in Case of the Numerical Model with Quadrilateral Mesh System (사각격자체계 수치모델에서의 경사면 처리기법에 관하여)

  • Hur, Dong-Soo;Lee, Woo-Dong;Bae, Ki-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.591-594
    • /
    • 2008
  • Present study aims at the development of a reasonable boundary condition for a structure over inclined seabed in case of the numerical model with quadrilateral mesh system. The technique for the inclined impermeable/permeable boundary in the quadrilateral mesh is newly proposed. The new technique and LES-WASS-3D model (Hur and Lee, 2007) have been used for the investigation of the dynamics of fluid field, and validated through the comparison with a typical stair-type boundary condition. 3-Dimensional numerical model with Large Eddy Simulation is called LES-WASS-3D, and is able to simulate directly interaction of WAve Structure Sea bed/Sandy beach.

FINITE ELEMENT ANALYSIS FOR DISCONTINUOUS MAPPED HEXA MESH MODEL WITH IMPROVED MOVING LEAST SQUARES SCHEME

  • Tezuka, Akira;Oishi, Chihiro;Asano, Naoki
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.373-379
    • /
    • 2001
  • There is a big issue to generate 3D hexahedral finite element (FE) model, since a process to divide the whole domain into several simple-shaped sub-domains is required before generating a continuous mesh with mapped mesh generators. In general, it is nearly impossible to set up proper division numbers interactively to keep mesh connectivity between sub-domains on a complicated arbitrary-shaped domain. If mesh continuity between sub-domains is not required in an analysis, this complicated process can be omitted. Element-free Galerkin method (EFGM) can accept discontinuous meshes, which only requires nodal information. However it is difficult to choose a reasonable influenced domain in moving least squares scheme with non-uniformly distributed nodes in discontinuous FE models. A new FE scheme fur discontinuous mesh is proposed in this paper by applying improved EFGM with some modification to derive FE approximated function in discontinuous parts. Its validity is evaluated on linear elastic problems.

  • PDF

Probability Distribution of Operation codes in Edgebreaker (Edgebreaker에서 Operation 코드들의 확률분포)

  • Cho Cheol-Hyung;Kang Chang-Wook;Kim Deok-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.4
    • /
    • pp.77-82
    • /
    • 2004
  • Being in an internet era, the rapid transmission of 3D mesh models is getting more important and efforts toward the compression of various aspects of mesh models have been provided. Even though a mesh model usually consists of coordinates of vertices and properties such as colors and normals, topology plays the most important part in the compression of other information in the models. Despite the extensive studies on Edgebreaker, the most frequently used and rigorously evaluated topology compressor, the probability distribution of its five op-codes, C, R, E, S, and L, has never been rigorously analyzed yet. In this paper, we present probability distribution of the op-codes which is useful for both the optimization of the compression performance and a priori estimation of compressed file size.

3-Dimensional Printing for Mesh Types of Short Arm Cast by Using Computed Tomography (전산화단층영상을 이용한 그물형 손목 부목의 3D 프린팅)

  • Seoung, Youl-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.308-315
    • /
    • 2015
  • The purpose of this study, using 3D printer, was tried to fabricate the short arm cast of mesh types that can be hygienic and adequate ventilation with a good radiography. We used the multi channel computed tomography (MDCT) with three dimension printer device of the fused deposition modeling (FDM) techniques. The material is used a degradable plastic (poly lactic acid, PLA). Three-dimensional images of the short arm were obtained in the MDCT and then make the three-dimensional volume rendering. Three dimension volume rendering of the short arm is implemented as a tomography obtained in MDCT. Virtual mesh type cast model was output as three-dimensional images is designed based on the three-dimensional images of the short arm. As a results, the cast output by 3D printers were able to obtain excellent radiograph images than the conventional cast, and then it can decreased itching with unsanitary, and can break down easily to the cast. In conclusion, the proposed virtual mesh type cast output by 3D printers could be used as a basis for future three-dimensional printing cast productions and offered help to patients in the real life.

Parametric Study with the Different Size of Meshes in Numerical Analysis Considering the Dynamic Soil-Pile Interactions (지반-말뚝 동적 상호 작용을 고려한 말뚝의 수치 모델링 : 메쉬 크기와 형상에 대한 매개 변수 연구)

  • Na, Seon-Hong;Kim, Seong-Hwan;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1441-1446
    • /
    • 2009
  • Numerical analysis is a powerful method in evaluating the soil-pile-structure interaction under the dynamic loading, and this approach has been applied to the practical area due to the development of computer technology. Finite Difference Method, one of the most popular numerical methods, is sensitive to the shape and the number of mesh. However, the trial and error approach is conducted to obtain the accurate results and the reasonable simulation time because of the lack of researches about mesh size and the number. In this study, FLAC 3D v3.1 program(FDM) is used to simulate the dynamic pile model tests, and the numerical results are compared with the 1G shaking table tests results. With the different size and shape of mesh, the responses of pile behavior and the simulation time are estimated, and the optimum mesh sizes in dynamic analysis of single pile is studied.

  • PDF

Compression of Normal Vectors using Octree Encoding (옥트리 인코딩을 이용한 법선 벡터의 압축)

  • Kim, Y.J.;Kim, J.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.2
    • /
    • pp.109-117
    • /
    • 2007
  • Three-dimensional mesh models have been widely used in various applications such as simulations, animations, and e-catalogs. In such applications the normal vectors of mesh models are used mainly for shading and take up the major portion of data size and transmission time paper over networks. Therefore a variety of techniques have been developed to compress them efficiently. In this paper, we propose the MOEC (Modified Octree Encoding Compression) algorithm, which allow multi lever compression ratios for 3D mesh models. In the algorithm, a modified octree has nodes representing their own positions and supporting a depth of the tree so that the normal vectors are compressed up to levels where the shading is visually indistinguishable. This approach provides efficient in compressing normals with multi-level ratios, without additional encoding when changing in compression ratio is required.

A Development of Data Structure and Mesh Generation Algorithm for Global Ship Analysis Modeling System (선박의 전선해석 모델링 시스템을 위한 자료구조와 요소생성 알고리즘 개발)

  • Kim I.I.;Choi J.H.;Jo H.J.;Suh H.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.61-69
    • /
    • 2005
  • In the global ship structure and vibration analysis, the FE(finite element) analysis model is required in the early design stage before the 3D CAD model is defined. And the analysis model generation process is a time-consuming job and takes much more time than the engineering work itself. In particular, ship structure has too many associated structural members such as stringers, stiffness and girders etc. These structural members should be satisfied as the constraints in analysis modeling. Therefore it is necessary to support generation of analysis model with satisfying these constraints as an automatic manner. For the effective support of the global ship analysis modeling, a method to generate analysis model using initial design information within ship design process, that hull form offset data and compartment data, is developed. In order to easily handle initial design information and FE model information, flexible data structure is proposed. An automatic quadrilateral mesh generation algorithm using initial design information to satisfy the constraints imposed on the ship structure is also proposed. The proposed data structure and mesh generation algorithm are applied for the various type of vessels for the usability test. Through this test, we have verified the stability and usefulness of this system including mesh generation algorithm.

Grid Discretization Study for the Efficient Aerodynamic Analysis of the Very Light Aircraft (VLA) Configuration

  • Sitio, Moses;Kim, Sangho;Lee, Jaewoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.122-132
    • /
    • 2013
  • In this research the development of unstructured grid discretization solution techniques is presented. The purpose is to describe such a conservative discretization scheme applied for experimental validation work. The objective of this paper is to better establish the effects of mesh generation techniques on velocity fields and particle deposition patterns to determine the optimal aerodynamic characteristics. In order to achieve the objective, the mesh surface discretization approaches used the VLA prototype manufacturing tolerance zone of the outer surface. There were 3 schemes for this discretization study implementation. They are solver validation, grid convergence study and surface tolerance study. A solver validation work was implemented for the simple 2D and 3D model to get the optimum solver for the VLA model. A grid convergence study was also conducted with a different growth factor and cell spacing, the amount of mesh can be controlled. With several amount of mesh we can get the converged amount of mesh compared to experimental data. The density around surface model can be calculated by controlling the number of element in every important and sensitive surface area of the model. The solver validation work result provided the optimum solver to employ in the VLA model analysis calculation. The convergence study approach result indicated that the aerodynamic trend characteristic was captured smooth enough compared with the experimental data. During the surface tolerance scheme, it could catch the aerodynamics data of the experiment data. The discretization studies made the validation work more efficient way to achieve the purpose of this paper.

Dismantling Simulation of Nuclear Reactor Using Partial Mesh Cutting Method for 3D Model (3D 형상 모델의 부분 절단 기법을 이용한 원자로 해체 시뮬레이션)

  • Lee, Wan-Bok;Hao, Wen-Yuan;Kyung, Byung-Pyo;Ryu, Seuc-Ho
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.303-310
    • /
    • 2015
  • Game technologies are now applied in various engineering areas such as the simulation of surgical operation or the implementation of a cyber model house. One of the essential and important technology in these applications is cutting of the 3D polygon model in real time. Real-time cutting technology is an essential technology needed to implement the simulation of a building demolition or a car assembly for training or educational purpose. Previous cutting method using the conventional BSP-Tree structure has some limitations in that they divide the whole world including the 3D model and its environment, only into two parts with respect to an infinite plane. In this paper, we show a technique cutting the 3D model in a finite extent in order to solve this problem. Specifically, we restricted the cut surface in a finite rectangular area and constructed the mesh for the divided surface. To show the usefulness of our partial cutting technique, an example of the dismantling process simulation of a nuclear reactor polygon model was illustrated.