• Title/Summary/Keyword: 3D Mesh Model

Search Result 309, Processing Time 0.034 seconds

Turbulent Flow Calculations Using an Unstructured Hybrid Meshes (2차원 혼합격자를 이용한 난류유동 계산)

  • Kim J. S.;Oh W. S.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.90-97
    • /
    • 1999
  • An implicit turbulent flow solver is developed for 2-D unstructured hybrid meshes. Spatial discretization is accomplished by a cell-centered finite volume formulation using an upwind flux differencing. Time is advanced by an implicit backward Euler time stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one equation model, which is coupled with wall function. The numerical method is applied for flows on a flat plate, the NACA 0012 airfoil, and the Douglas 3 element airfoil. The results are compared with experimental data.

  • PDF

3D mesh compression using model segmentation and de-duplications (모델 분할 및 중복성 제거 기법을 이용한 3차원 메쉬 압축 기술)

  • Kim, Sungjei;Jeong, Jinwoo;Yoon, Ju Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.190-191
    • /
    • 2020
  • 본 논문은 모델 분할 기법과 중복성 제거 기법을 통한 대용량 3차원 메쉬 모델의 고속 압축 기술에 관한 내용이다. 대용량 3차원 메쉬 모델의 비실시간 압축은 실시간 스트리밍 응용 시나리오에서 제약점으로 작용하고 있고, 본 논문에서는 인코딩 시간을 줄이기 위해 경량 메쉬 분할 방법을 통해 대용량 메쉬를 여러 개의 작은 메쉬로 분할하고, 각각의 분할된 메쉬를 병렬적으로 인코딩하여 처리 속도를 개선하였다. 또한, 메쉬 모델 내의 같은 기하학적 정보를 가진 중복된 정점들이 존재할 수 있으며, 중복된 정보를 제거하고 제거된 정점과 삼각형 표면 간의 연결 정보를 갱신하는 과정을 통해 메쉬 모델의 기하학적 정보를 유지하면서 압축 성능을 확보하였다.

  • PDF

Static behavior of a laterally loaded guardrail post in sloping ground by LS-DYNA

  • Woo, Kwang S.;Lee, Dong W.;Yang, Seung H.;Ahn, Jae S.
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1101-1111
    • /
    • 2018
  • This study aims to present accurate soil modeling and validation of a single roadside guardrail post as well as a single concrete pile installed near cut slopes or compacted sloping embankment. The conventional Winkler's elastic spring model and p-y curve approach for horizontal ground cannot directly be applied to sloping ground where ultimate soil resistance is significantly dependent on ground inclination. In this study, both grid-based 3-D FE model and particle-based SPH (smoothed particle hydrodynamics) model available in LS-DYNA have been adopted to predict the static behavior of a laterally loaded guardrail post. The SPH model has potential to eliminate any artificial soil stiffness due to the deterioration of the node-connected Lagrangian soil mesh. For this purpose, this study comprises two parts. Firstly, only 3-D FE modeling has been tested to show the numerical validity for a single concrete pile in sloping ground using Mohr-Coulomb material. However, this material option cannot be implemented for SPH elements. Nevertheless, Mohr-Coulomb model has been used since this material model requires six input soil data that can be obtained from the comparative papers in literatures. Secondly, this work is extended to compute the lateral resistance of a guardrail post located near the slope using the hybrid approach that combines Lagrange FE elements and SPH elements by the suitable node-merging option provided by LS-DYNA. For this analysis, the FHWA soil material developed for application to road-base soils has been used and also allows the application of SPH element.

Appropriate Boundary Conditions for Three Dimensional Finite Element Implicit Dynamic Analysis of Flexible Pavement (연성포장의 3차원 유한요소해석을 위한 최적 경계조건 분석)

  • Yoo, Pyeong-Jun;Al-Qadi, Imad L.;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.213-224
    • /
    • 2008
  • Flexible pavement responses to vehicular loading, such as critical stresses and strains, in each pavement layer, could be predicted by the multilayered elastic analysis. However, multilayered elastic theory suffers from major drawbacks including spatial dimension of a numerical model, material properties considered in the analysis, boundary conditions, and ill-presentation of tire-pavement contact shape and stresses. To overcome these shortcomings, three-dimensional finite element (3D FE) models are developed and numerical analyses are conducted to calculate pavement responses to moving load in this study. This paper introduces a methodology for an effective 3D FE to simulate flexible pavement structure. It also discusses the mesh development and boundary condition analysis. Sensitivity analyses of flexible pavement response to loading are conducted. The infinite boundary conditions and time-dependent history of calculated pavement responses are considered in the analysis. This study found that the outcome of 3D FE implicit dynamic analysis of flexible pavement that utilizes appropriate boundary conditions, continuous moving load, viscoelastic hot-mix asphalt model is comparable to field measurements.

  • PDF

A Simulation of 3-D Navigation System of the Helicopter based on TRN Using Matlab

  • Kim, Eui-Hong;Lee, Hong-Ro
    • Spatial Information Research
    • /
    • v.15 no.4
    • /
    • pp.363-370
    • /
    • 2007
  • This study has been carried for the development of the basic algorithm of helicopter navigation system based on TRN (Terrain Referenced Navigation) with information input from the GPS. The helicopter determines flight path due to Origination-Destination analysis on the Cartesian coordinate system of 3-D DTM. This system shows 3-D mesh map and the O-D flight path profile for the pilot's acknowledgement of the terrain, at first. The system builds TCF (terrain clearance floor) far the buffer zone upon the surface of ground relief to avid the ground collision. If the helicopter enters to the buffer zone during navigation, the real-time warning message which commands to raise the body pops up using Matlab menu. While departing or landing, control of the height of the body is possible. At present, the information (x, y, z coordinates) from the GPS is assumed to be input into the system every 92.8 m of horizontal distance while navigating along flight path. DTM of 3" interval has been adopted from that which was provided by ChumSungDae Co., Ltd..

  • PDF

Numerical modelling of stress and deflection behaviour for welded steel beam-column

  • Soy, Ugur
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.249-260
    • /
    • 2012
  • In this study, stress and deflection behaviours of T-type welding joint applied to HE200M steel beam and column were investigated in finite element method (FEM) under different distributed loads. In the 3D-FEM modelling, glue option was used to contact between steel materials and weld nuggets. Geometrical model was designed as 3-dimensional solid in ANSYS software program. After that, homogeneous, linear and isotropic properties were used to design to materials of model. Solid-92 having 3-dimensional, 4 faced and 10-noded was selected as element type. In consequence of mesh operation, elements of 13285 and nodes of 28086 were occurred. Load distribution was applied to top surface of steel beam to determine behaviours of stress and deflection. As a result of FEM analysis applied with the loads of 55,000 N, 110,000 N and 220,000 N, maximum values were obtained as 116 N/$mm^2$, 232 N/$mm^2$ and 465 N/$mm^2$ for stress and obtainedas 1,083 mm, 2,166 mm and 4.332 mm for deflection, respectively. When modelling results and classical calculation values were compared, it was obtained difference of 10 % for stress values and 2.5% for deflection values.

Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

  • Moshari, Shahab;Nikseresht, Amir Hossein;Mehryar, Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.219-235
    • /
    • 2014
  • With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

The three dimensional analysis for the arrhythmia of the atrium (심방부정맥에 대한 3차원 모델 해석)

  • Kwon, Soon-Sung;Lim, Ki-Moo;Lee, Jeong-Jae;Shim, Eun-Bo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1669-1673
    • /
    • 2008
  • In this study, we simulated the atrial arrhythmia numerically. By using electro-physiological model of atrial cell from Nygren et al. and applying reaction-diffusion partial differential equation, we simulated electrical conduction in atrium. A 3-D mesh system representing the human atrium was reconstructed from the surface geometry of atrium. We used a stimulus in the form of an archetype around pulmonary vessels in the left atrium to cause the atrial arrhythmia. The septal atrial tarchycardia was developed after the stimulus.

  • PDF

Application of Multi-Resolution Modeling in Collaborative Design (협업 설계에서의 다중해상도 모델링 응용)

  • Kim, Tae-Seong;Han, Jung-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.339-346
    • /
    • 2003
  • This paper provides a framework for information assurance within collaborative design, based on a technique we call role-based viewing. Such role-based viewing is achieved through integration of multi-resolution geometry and security models. 3D models are geometrically partitioned, and the partitioning is used to create multi-resolution mesh hierarchies. Extracting a model suitable for access rights for individual designers within a collaborative design environment Is driven by an elaborate access control mechanism. 

Uniformly Convergent Numerical Method for Singularly Perturbed Convection-Diffusion Problems

  • Turuna, Derartu Ayansa;Woldaregay, Mesfin Mekuria;Duressa, Gemechis File
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.629-645
    • /
    • 2020
  • A uniformly convergent numerical method is developed for solving singularly perturbed 1-D parabolic convection-diffusion problems. The developed method applies a non-standard finite difference method for the spatial derivative discretization and uses the implicit Runge-Kutta method for the semi-discrete scheme. The convergence of the method is analyzed, and it is shown to be first order convergent. To validate the applicability of the proposed method two model examples are considered and solved for different perturbation parameters and mesh sizes. The numerical and experimental results agree well with the theoretical findings.