• 제목/요약/키워드: 3D Measurements

검색결과 1,826건 처리시간 0.028초

3차원 가중최소제곱을 이용한 SFF에서의 초점 측도 개선 (Enhancing Focus Measurements in Shape From Focus Through 3D Weighted Least Square)

  • 무하마드 타릭 마흐무드;우스만 알리;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.66-71
    • /
    • 2019
  • In shape from focus (SFF) methods, the quality of image focus volume plays a vital role in the quality of 3D shape reconstruction. Traditionally, a linear 2D filter is applied to each slice of the image focus volume to rectify the noisy focus measurements. However, this approach is problematic because it also modifies the accurate focus measurements that should ideally remain intact. Therefore, in this paper, we propose to enhance the focus volume adaptively by applying 3-dimensional weighted least squares (3D-WLS) based regularization. We estimate regularization weights from the guidance volume extracted from the image sequences. To solve 3D-WLS optimization problem efficiently, we apply a technique to solve a series of 1D linear sub-problems. Experiments conducted on synthetic and real image sequences demonstrate that the proposed method effectively enhances the image focus volume, ultimately improving the quality of reconstructed shape.

Characterization of auto-stereoscopic and polarization based 3D displays: a common approach

  • Leroux, Thierry;Boher, Pierre;Collomb-Patton, Veronique;Bignon, Thibault
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.975-978
    • /
    • 2009
  • Even if auto-stereoscopic and polarization based 3D displays are not working with the same principles, their common aim is to provide two different images in the eyes of the observer. In this paper we show that Fourier optics instrument for viewing angle measurements can be applied to both types of displays. Luminance measurements are made at different locations and what will be seen by an observer in front of the display is predicted. Precise 3D characteristics can be derived and direct comparison becomes possible.

  • PDF

Grasshopper 프로그래밍 기반 3D 인체형상의 하반신 기준점 자동탐색 알고리즘 설계 (Development of an Algorithm for Automatic Extraction of Lower Body Landmarks Using Grasshopper Programming Language)

  • 유은주;송화경
    • 한국의류학회지
    • /
    • 제47권1호
    • /
    • pp.171-190
    • /
    • 2023
  • This study aims to develop algorithms for automatic extraction landmarks from the lower body of women aged 20-54 using the Grasshopper programming language, based on 3D scan data in the 8th SizeKorea dataset. First, 11 landmarks were defined using the morphological features of 3D body surfaces and clothing applications, from which automatic landmark extraction algorithms were developed. To verify the accuracy of the algorithm, this study developed an additional algorithm that could automatically measure 16 items, and algorithm-derived measurements and SizeKorea measurements were compared using paired t-test analysis. The statistical differences between the scan-derived measurements and the SizeKorea measurements were compared, with an allowable tolerance of ISO 20685-1:2018. This study found that the algorithm successfully identified most items except for the crotch point and gluteal fold point. In the case of landmarks with significant differences, the algorithms were modified. This study was significant because scan editing, landmark search, and measurement extraction were successfully performed in one interface, and the developed algorithm has a high efficiency and strong adaptability.

Quantitative Measurements of 3-D Imaging with Computed Tomography using Human Skull Phantom

  • Kim, Dong-Wook;Kim, Hee-Joung;Haijo Jung;Soonil Hong;Yoo, Young-Il;Kim, Dong-Hyeon;Kim, Kee-Deog
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.506-508
    • /
    • 2002
  • As an advancement of medical imaging modalities and analyzing software with multi-function, active researches to acquire high contrast and high resolution image being done. In recently, development of medical imaging modalities like as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) is aiming to display anatomical structure more accuracy and faster. Thus, one of the important areas in CT today is the use of CT scanner for the quantitative evaluation of 3-D reconstruction images from 2-D tomographic images. In CT system, the effective slice thickness and the quality of 3-D reconstructed image will be influenced by imaging acquisition parameters (e.g. pitch and scan mode). In diagnosis and surgical planning, the accurate distance measurements of 3-D anatomical structures play an important role and the accuracy of distance measurements will depend on the acquisition parameters such as slice thickness, pitch, and scan mode. The skull phantom was scanned with SDCT for various acquisition parameters and acquisition slice thicknesses were 3 and 5 mm, and reconstruction intervals were 1, 2, and 3 mm to each pitch. 3-D visualizations and distance measurements were performed with PC based 3-D rendering and analyzing software. Results showed that the image quality and the measurement accuracy of 3-D SDCT images are independent to the reconstruction intervals and pitches.

  • PDF

Linear accuracy of cone-beam computed tomography and a 3-dimensional facial scanning system: An anthropomorphic phantom study

  • Oh, Song Hee;Kang, Ju Hee;Seo, Yu-Kyeong;Lee, Sae Rom;Choi, Hwa-Young;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • 제48권2호
    • /
    • pp.111-119
    • /
    • 2018
  • Purpose: This study was conducted to evaluate the accuracy of linear measurements of 3-dimensional (3D) images generated by cone-beam computed tomography (CBCT) and facial scanning systems, and to assess the effect of scanning parameters, such as CBCT exposure settings, on image quality. Materials and Methods: CBCT and facial scanning images of an anthropomorphic phantom showing 13 soft-tissue anatomical landmarks were used in the study. The distances between the anatomical landmarks on the phantom were measured to obtain a reference for evaluating the accuracy of the 3D facial soft-tissue images. The distances between the 3D image landmarks were measured using a 3D distance measurement tool. The effect of scanning parameters on CBCT image quality was evaluated by visually comparing images acquired under different exposure conditions, but at a constant threshold. Results: Comparison of the repeated direct phantom and image-based measurements revealed good reproducibility. There were no significant differences between the direct phantom and image-based measurements of the CBCT surface volume-rendered images. Five of the 15 measurements of the 3D facial scans were found to be significantly different from their corresponding direct phantom measurements(P<.05). The quality of the CBCT surface volume-rendered images acquired at a constant threshold varied across different exposure conditions. Conclusion: These results proved that existing 3D imaging techniques were satisfactorily accurate for clinical applications, and that optimizing the variables that affected image quality, such as the exposure parameters, was critical for image acquisition.

Accuracy and reliability of 2-dimensional photography versus 3-dimensional soft tissue imaging

  • Ayaz, Irem;Shaheen, Eman;Aly, Medhat;Shujaat, Sohaib;Gallo, Giulia;Coucke, Wim;Politis, Constantinus;Jacobs, Reinhilde
    • Imaging Science in Dentistry
    • /
    • 제50권1호
    • /
    • pp.15-22
    • /
    • 2020
  • Purpose: This study was conducted to objectively and subjectively compare the accuracy and reliability of 2-dimensional(2D) photography and 3-dimensional(3D) soft tissue imaging. Materials and Methods: Facial images of 50 volunteers(25 males, 25 females) were captured with a Nikon D800 2D camera (Nikon Corporation, Tokyo, Japan), 3D stereophotogrammetry (SPG), and laser scanning (LS). All subjects were imaged in a relaxed, closed-mouth position with a normal smile. The 2D images were then exported to Mirror® Software (Canfield Scientific, Inc, NJ, USA) and the 3D images into Proplan CMF® software (version 2.1, Materialise HQ, Leuven, Belgium) for further evaluation. For an objective evaluation, 2 observers identified soft tissue landmarks and performed linear measurements on subjects' faces (direct measurements) and both linear and angular measurements on all images(indirect measurements). For a qualitative analysis, 10 dental observers and an expert in facial imaging (subjective gold standard) completed a questionnaire regarding facial characteristics. The reliability of the quantitative data was evaluated using intraclass correlation coefficients, whereas the Fleiss kappa was calculated for qualitative data. Results: Linear and angular measurements carried out on 2D and 3D images showed excellent inter-observer and intra-observer reliability. The 2D photographs displayed the highest combined total error for linear measurements. SPG performed better than LS, with borderline significance (P=0.052). The qualitative assessment showed no significant differences among the 2D and 3D imaging modalities. Conclusion: SPG was found to a reliable and accurate tool for the morphological evaluation of soft tissue in comparison to 2D imaging and laser scanning.

Accuracy of three-dimensional printing for manufacturing replica teeth

  • Lee, Keun-Young;Cho, Jin-Woo;Chang, Na-Young;Chae, Jong-Moon;Kang, Kyung-Hwa;Kim, Sang-Cheol;Cho, Jin-Hyoung
    • 대한치과교정학회지
    • /
    • 제45권5호
    • /
    • pp.217-225
    • /
    • 2015
  • Objective: Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods: Fifty extracted molar teeth were selected as samples. They were scanned to generate high-resolution 3D surface model stereolithography files. These files were converted into physical models using two types of 3D printing technologies: Fused deposition modeling (FDM) and PolyJet technology. All replica teeth were scanned and 3D images generated. Computer software compared the replica teeth to the original teeth with linear measurements, volumetric measurements, and mean deviation measurements with best-fit alignment. Paired t-tests were used to statistically analyze the measurements. Results: Most measurements of teeth formed using FDM tended to be slightly smaller, while those of the PolyJet replicas tended to be slightly larger, than those of the extracted teeth. Mean deviation measurements with best-fit alignment of FDM and PolyJet group were 0.047 mm and 0.038 mm, respectively. Although there were statistically significant differences, they were regarded as clinically insignificant. Conclusions: This study confirms that FDM and PolyJet technologies are accurate enough to be usable in orthodontic diagnosis and treatment.

Use of an anatomical mid-sagittal plane for 3-dimensional cephalometry: A preliminary study

  • Vernucci, Roberto Antonio;Aghazada, Huseynagha;Gardini, Kelly;Fegatelli, Danilo Alunni;Barbato, Ersilia;Galluccio, Gabriella;Silvestri, Alessandro
    • Imaging Science in Dentistry
    • /
    • 제49권2호
    • /
    • pp.159-169
    • /
    • 2019
  • Purpose: Cone-beam computed tomography (CBCT) is widely used for 3-dimensional assessments of cranio-maxillo-facial relationships, especially in patients undergoing orthognathic surgery. We have introduced, for reference in CBCT cephalometry, an anatomical mid-sagittal plane (MSP) identified by the nasion, the midpoint between the posterior clinoid processes of the sella turcica, and the basion. The MSP is an updated version of the median plane previously used at our institution for 2D posterior-anterior cephalometry. This study was conducted to test the accuracy of the CBCT measures compared to those obtained using standard posterior-anterior cephalometry. Materials and Methods: Two operators measured the inter-zygomatic distance on 15 CBCT scans using the MSP as a reference plane, and the CBCT measurements were compared with measurements made on patients' posterior-anterior cephalograms. The statistical analysis evaluated the absolute and percentage differences between the 3D and 2D measurements. Results: As demonstrated by the absolute mean difference (roughly 1 mm) and the percentage difference (less than 3%), the MSP showed good accuracy on CBCT compared to the 2D plane, especially for measurements of the left side. However, the CBCT measurements showed a high standard deviation, indicating major variability and low precision. Conclusion: The anatomical MSP can be used as a reliable reference plane for transverse measurements in 3D cephalometry in cases of symmetrical or asymmetrical malocclusion. In patients who suffer from distortions of the skull base, the identification of landmarks might be difficult and the MSP could be unreliable. Becoming familiar with the relevant software could reduce errors and improve reliability.

3차원 스캔측정치와 직접치수간 차이의 성별 비교 -제5차 Size Korea 성인데이터를 대상으로- (A Comparative Analysis of the Difference between 3D Body Scan Measurements and Physical Measurements by Gender -5th Size Korea Adult Data-)

  • 한현숙;남윤자
    • 한국의류학회지
    • /
    • 제33권8호
    • /
    • pp.1190-1202
    • /
    • 2009
  • A 3D body scan measurement (SM) is used as an alternative to physical measurements (PM) as the information for designing industrial products. This study compared the mean difference (MD) between SM and PM by gender and analyzed the causes of the difference. The data used in this study were the scan measurements and physical measurements of adults aged twenty to seventy years old of the fifth Size Korea survey. The results of this study are as follows: 1. The comparison of MD between men and women for all subjects: The measurement of the significant differences between men and women were height, neck base girth, chest girth, under-bust girth, waist girth, armscye girth, back length, and foot length. The causes of difference are the difference of body shape. 2. The comparison of MD between men and women by BMI groups: Many measurements had significant differences between men and women at normal weight and overweight but underweight. Some measurements had significant differences only at a specific BMI group because the body shape difference between men and women is revealed clearly in the group. The comparison of MD between men and women by age groups: The measurements that show significant difference at more than four age groups were neck girth, chest girth, under-bust girth, waist girth, armscye girth, and foot length. The height and abdomen girth had a significant difference in the age range of 20's and 30's. There were measurements that increase MD with an increase in age; under-bust girth and lateral shoulder length for women and lateral shoulder length for men. This comparison of MD between men and women provide the correct guidelines for the use of SM.

국내 여성 패션모델의 3차원 가상인체 모델링을 통한 토르소형 인대 개발과 그 특성 분석 (The Analysis on the Torso Type Dress Form Developed Through the 3-D Virtual Body Modeling of the Korean Female Fashion Models)

  • 박진아
    • 복식
    • /
    • 제65권2호
    • /
    • pp.157-175
    • /
    • 2015
  • The study was aimed to develop a torso-type dress form representing body features of the female fashion models in Korea. To fulfill this purpose, 5 female fashion models aged between 20 and 26 having the average body measurements of professional fashion models in Korea were selected and their 3-D whole body scanned data were analysed. The 3-D whole body scanning method enabled to generate a virtual female fashion model within the CAD system by measuring the subjects' body shapes and sizes. In addition, the virtual model's body data led the development of a standard female fashion model dress form for the efficient fashion show preparation. In order to manufacture the real dress form for female fashion models, 3-D printing technology was adopted. The consequent results are as follows: (1) the body measurements (unit: cm) of the developed dress form were: biacromion length, 36.0, bust point to bust point, 16.6, front/back interscye lengths, 32.0/33.0, neck point to breast point, 26.0, neck point to breast point to waist line, 41.5, waist front/back lengths, 34.5/38.5, waist to hip length, 24.0, bust circumference, 85.0, underbust circumference, 75.0, waist circumference, 65.0, hip circumference, 92.0. (2) the body measurements differences between the developed and existing dress forms were highlighted with the body measurements of neck point to breast point and waist to hip length. (3) the body shape features of the developed dress form showed that bust, shoulder blade, shoulder slope, abdomen and back waist line to hip line parts were more realistically manufactured.