• Title/Summary/Keyword: 3D Location

Search Result 1,368, Processing Time 0.04 seconds

Personalized Recommendation Algorithm of Interior Design Style Based on Local Social Network

  • Guohui Fan;Chen Guo
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.576-589
    • /
    • 2023
  • To upgrade home style recommendations and user satisfaction, this paper proposes a personalized and optimized recommendation algorithm for interior design style based on local social network, which includes data acquisition by three-dimensional (3D) model, home-style feature definition, and style association mining. Through the analysis of user behaviors, the user interest model is established accordingly. Combined with the location-based social network of association rule mining algorithm, the association analysis of the 3D model dataset of interior design style is carried out, so as to get relevant home-style recommendations. The experimental results show that the proposed algorithm can complete effective analysis of 3D interior home style with the recommendation accuracy of 82% and the recommendation time of 1.1 minutes, which indicates excellent application effect.

Image and Observer Regions in 3D Displays

  • Saveljev, Vladimir
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.68-75
    • /
    • 2010
  • The relation between light sources and screen cells is considered part of the theoretical model of an autostereoscopic 3D display. The geometry of the image and observer regions is presented, including the cases of single and multiple regions. The characteristic function is introduced. Formulas for the geometric parameters are obtained, including areas and angles. Special attention is drawn to the screen location. The method of transforming the formulas between regions is stated. For multiple regions, geometric dissimilarity was found. This allows the model to be applied in finding the geometric characteristics of multiview and integral-imaging 3D displays.

3D VISION SYSTEM FOR THE RECOGNITION OF FREE PARKING SITE LOCATION

  • Jung, H.G.;Kim, D.S.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.361-367
    • /
    • 2006
  • This paper describes a novel stereo vision based localization of free parking site, which recognizes the target position of automatic parking system. Pixel structure classification and feature based stereo matching extract the 3D information of parking site in real time. The pixel structure represents intensity configuration around a pixel and the feature based stereo matching uses step-by-step investigation strategy to reduce computational load. This paper considers only parking site divided by marking, which is generally drawn according to relevant standards. Parking site marking is separated by plane surface constraint and is transformed into bird's eye view, on which template matching is performed to determine the location of parking site. Obstacle depth map, which is generated from the disparity of adjacent vehicles, can be used as the guideline of template matching by limiting search range and orientation. Proposed method using both the obstacle depth map and the bird's eye view of parking site marking increases operation speed and robustness to visual noise by effectively limiting search range.

3D Terrain Analysis and Suitability Analysis Using KOMPSAT 2 Satellite Images (아리랑2호 영상을 이용한 3차원지형 분석 및 적지분석)

  • Han, seung-hee;Lee, jin-duk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.436-440
    • /
    • 2008
  • Complete consideration on condition and surrounding environment shall be performed to select proper location for complex planning or establishment of facility with special purpose. Especially, in case of living space for human, lighting, ventilation, efficiency in land use, etc. are important elements. Diverse 3D analysis through 3D topography modeling and virtual simulation is necessary for this. Now, it can be processed with relatively inexpensive cost since high resolution satellite image essential in topography modeling is provided with domestic technology through Arirang No. 2 satellite (KOMPSAT2). In this study, several candidate sites is selected for complex planning with special purpose and analysis on proper location was performed using the 3D topography modeling and land information. For this, land analysis, land price calculation, slope analysis and aspect analysis have been carried out. As a result of arranging the evaluation index for each candidate site and attempting the quantitative evaluation, proper location could be selected efficiently and reasonably.

  • PDF

A study on the technological and locational changes of textile industry in Korea (韓國 纖維工業의 技術變化와 立地에 관한 연구)

  • ;Kim, Seon Bae
    • Journal of the Korean Geographical Society
    • /
    • v.38
    • /
    • pp.37-59
    • /
    • 1988
  • The aim of this study is to investigate the influence of the technological changes on locational changes on the assumption that technological changes cover over all industrial sectors. The study is carred on 1) To investigate the theoretical backgrounds of the technological and locational changes and their problems. 2) To investigate the location and economic characteristics of the Korean textile industry. 3) To investigate the technological development and regional variations in technological level. 4) To the relationship of the technological change to the location of the textile industries. The locational change of the Korean textile industries have been closely related to economic characteristics. In the begining stage of development in the 1950's, thetextile industries were largely concentrated in the major cities(Seoul, Pusan, Taegu, Masan et. al.). In the growing stage of development in the 1960's, the textile industries were relocated in suburban areas with the trend of large corporations building their branch plants of chemical fibers in the suburbs. With the expansion in the export industry in the 1970's, the textile companies were distributed throughout the whole country. But the research and development(R&D) activities caused the textile industries reconcentrate around Seoul and Pusan, owining to the change of the economic environments in the 1980's. The 1980's have witnessed the increased R&D investment for the development of better new and value-added products. This was because the technological level was much higher than that of Taegu and Other regions. What is more, plant birth location and branch plant location support that locational changes of textile industry were caused by technological changes. Plant birth location put stress technological environments of region, compared with branch plant locaiton. Accordingly, the technological changes of industry can be an important factor in locational changes. Through this study, it can be seen that locational changes come from technological changes. Other locational factors influence the industrial locations, but regional variations in technological level which has been relatively ignored has to be considered on the location study. Together with the accomplishments of existing location study, the study on technological change and location can better explain the location phenomena. And further research on technological change and location can provide better policy implications for regional development.

  • PDF

ANN based Indoor Localization Method using the Movement Pattern of Indoor User (사용자 이동 패턴 정보를 이용한 인공신경망 기반 실내 위치 추정 방법)

  • Seo, Jae-Hee;Chun, Sebum;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.526-534
    • /
    • 2019
  • Localization methods using radio signals should obtain range measurements from three or more anchors. However, a typical building consists of narrow, long hallways and corners, making it difficult to secure more than three light of sight anchors. The result is a multi-modal solution that makes it difficult to estimate the user's location. In order to overcome this problem, this paper proposes a method for estimating the location using artificial neural networks. Using the artificial neural network, even if a multi-modal solution occurs, the position can be estimated by acquiring user movement pattern information based on accumulated range measurements. The method does not require any additional equipment or sensors, and only anchor-based range measurements can estimate the user's location. In order to verify the proposed method, location estimation tests were performed in situations where the multi-modal solution occurred by installing an insufficient number of anchors in a building. As a result, it was confirmed that the location can be estimated even when the number of anchors is insufficient.

Localization of Unmanned Ground Vehicle using 3D Registration of DSM and Multiview Range Images: Application in Virtual Environment (DSM과 다시점 거리영상의 3차원 등록을 이용한 무인이동차량의 위치 추정: 가상환경에서의 적용)

  • Park, Soon-Yong;Choi, Sung-In;Jang, Jae-Seok;Jung, Soon-Ki;Kim, Jun;Chae, Jeong-Sook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.700-710
    • /
    • 2009
  • A computer vision technique of estimating the location of an unmanned ground vehicle is proposed. Identifying the location of the unmaned vehicle is very important task for automatic navigation of the vehicle. Conventional positioning sensors may fail to work properly in some real situations due to internal and external interferences. Given a DSM(Digital Surface Map), location of the vehicle can be estimated by the registration of the DSM and multiview range images obtained at the vehicle. Registration of the DSM and range images yields the 3D transformation from the coordinates of the range sensor to the reference coordinates of the DSM. To estimate the vehicle position, we first register a range image to the DSM coarsely and then refine the result. For coarse registration, we employ a fast random sample matching method. After the initial position is estimated and refined, all subsequent range images are registered by applying a pair-wise registration technique between range images. To reduce the accumulation error of pair-wise registration, we periodically refine the registration between range images and the DSM. Virtual environment is established to perform several experiments using a virtual vehicle. Range images are created based on the DSM by modeling a real 3D sensor. The vehicle moves along three different path while acquiring range images. Experimental results show that registration error is about under 1.3m in average.

Direct Finite Element Model Generation using 3 Dimensional Scan Data (3D SCAN DATA 를 이용한 직접유한요소모델 생성)

  • Lee Su-Young;Kim Sung-Jin;Jeong Jae-Young;Park Jong-Sik;Lee Seong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.143-148
    • /
    • 2006
  • It is still very difficult to generate a geometry model and finite element model, which has complex and many free surface, even though 3D CAD solutions are applied. Furthermore, in the medical field, which is a big growth area of recent years, there is no drawing. For these reasons, making a geometry model, which is used in finite element analysis, is very difficult. To resolve these problems and satisfy the requests of the need to create a 3D digital file for an object where none had existed before, new technologies are appeared recently. Among the recent technologies, there is a growing interest in the availability of fast, affordable optical range laser scanning. The development of 3D laser scan technology to obtain 3D point cloud data, made it possible to generate 3D model of complex object. To generate CAD and finite element model using point cloud data from 3D scanning, surface reconstruction applications have widely used. In the early stage, these applications have many difficulties, such as data handling, model creation time and so on. Recently developed point-based surface generation applications partly resolve these difficulties. However there are still many problems. In case of large and complex object scanning, generation of CAD and finite element model has a significant amount of working time and effort. Hence, we concerned developing a good direct finite element model generation method using point cloud's location coordinate value to save working time and obtain accurate finite element model.

u-Healthcare Context Information System Using Mobile Proxy Based on Distributed Object Group Framework (DOGF 기반의 모바일 프락시를 이용한 u-헬스케어 상황정보 시스템)

  • Jeong, Chang-Won;Ahn, Dong-In;Kang, Min-Gyu;Joo, Su-Chong
    • The KIPS Transactions:PartD
    • /
    • v.15D no.3
    • /
    • pp.411-420
    • /
    • 2008
  • This paper implemented the u-Healthcare Context Information System (HCIS) supporting ubiquitous healthcare by using location, health and titrating environment information collected from sensors/devices equipped in home for healthcare home service. The HCIS is based on the Distributed Object Group Framework (DOGF), a management model which can customize distributed resources, and manages various context information, applications and devices as a group in healthcare home environment, as one more logical units. Also, this system provides continuous healthcare multimedia service considering a resident's location using Mobile Proxy, and the healthcare context information through Context Provider to a resident in home. For verifying execution of our system, we implemented the seamless multimedia service based on resident's location and the prescription/advice and schedule notification/alarm service as healthcare applications in home. And we showed the executing results of healthcare home service by using service device existed in the residential space on which the resident is located according to the healthcare scenario.

Reducing Computational Complexity for Local Maxima Detection Using Facet Model (페이싯 모델을 이용한 국부 극대점 검출의 처리 속도 개선)

  • Lee, Gyoon-Jung;Park, Ji-Hwan;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • In this paper, we propose a technique to detect the size and location of the small target in images by using Gaussian kernel repeatedly. In order to detect the size and location of the small target, we find the local maximum value by applying the facet model and then use the $3{\times}3$ Gaussian kernel repeatedly. we determine the size of small target by comparing the local maximum value $D_2$ according to the number of iteration. To reduce the computational complexity, we use the Gaussian pyramid when using the kernel repeatedly. Through the experiment, we verified that the size and location of the small target is detected by the number of iterations and results show improvements from conventional methods.