• Title/Summary/Keyword: 3D Location

Search Result 1,368, Processing Time 0.027 seconds

Modeling and Controlling of Surface Defect Initiation and Growth in Groove Rolling (공형 압연에서의 표면흠 성장 모델링 및 제어 방법 연구)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.607-612
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No.3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibit the generation of surface defect.

A Study on Airborne LiDAR Calibration and Operation Techniques for Bathymetric Survey

  • Shin, Moon Seung;Yang, In Tae;Lee, Dong Ha
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2016
  • The necessity of maritime sector for continuous management, accurate and update location information such as seabed shape and location, research on airborne LiDAR bathymetry surveying techniques are accelerating. Airborne LiDAR systems consist of a scanner and GPS/INS. The location accuracy of 3D point data obtained by a LiDAR system is determined by external orientation parameters. However, there are problems in the synchronization between sensors should be performed due to a variety of sensor combinations and arrangement. To solve this issue, system calibration should be conducted. Therefore, this study evaluates the system verification methods, processes, and operation techniques.

Development of a Batch-mode-based Comparison System for 3D Piping CAD Models of Offshore Plants (Aveva Marine과 SmartMarine 3D간의 해양 플랜트 3D 배관 CAD 모델의 배치모드 기반 비교 시스템 개발)

  • Lee, Jaesun;Kim, Byung Chul;Cheon, Sanguk;Cho, Mincheol;Lee, Gwang;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.1
    • /
    • pp.78-89
    • /
    • 2016
  • When a plant owner requests plant 3D CAD models in the format that a shipbuilding company does not use, the shipyard manually re-models plant 3D CAD models according to the owner's requirement. Therefore, it is important to develop a technology to compare the re-modeled plant 3D CAD models with original ones and to quantitatively evaluate similarity between two models. In the previous study, we developed a graphic user interface (GUI)-based comparison system where a user evaluates similarity between original and re-modeled plant 3D CAD models for piping design at the level of unit. However, an offshore plant consists of thousands of units and thus a system which compares several plant 3D CAD models at unit-level without human intervention is necessary. For this, we developed a new batch model comparison system which automatically evaluates similarity of several unit-level plant 3D CAD models using an extensible markup language (XML) file storing file location and name data about a set of plant 3D CAD models. This paper suggests system configuration of a batch-mode-based comparison system and discusses its core functions. For the verification of the developed system, comparison experiments for offshore plant 3D piping CAD models using the system were performed. From the experiments, we confirmed that similarities for several plant 3D CAD models at unit-level were evaluated without human intervention.

PLAXIS 3D simulation, FLAC3D analysis and in situ monitoring of Excavation stability

  • Lei, Zhou;Zahra, Jalalichi;Vahab, Sarfarazi;Hadi, Haeri;Parviz, Moarefvand;Mohammad Fatehi, Marji;Shahin, Fattahi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.743-765
    • /
    • 2022
  • Near-surface excavations may cause the tilting and destruction of the adjacent superstructures in big cities. The stability of a huge excavation and its nearby superstructures was studied in this paper. Some test instruments monitored the deformation and loads at the designed location. Then the numerical models of the excavation were made in FLAC3D (a three-dimensional finite difference code) and Plaxis-3D (a three-dimensional finite element code). The effects of different supporting and reinforcement tools such as nails, piles, and shotcretes on the stability and bearing capacity of the foundation were analyzed through different numerical models. The numerically approximated results were compared with the corresponding in-field monitored results and reasonable compatibility was obtained. It was concluded that the displacement in excavation and the settlement of the nearby superstructure increases gradually as the depth of excavation rises. The effects of support and reinforcements were also observed and modeled in this study. The settlement of the structure gradually decreased as the supports were installed. These analyses showed that the pile significantly increased the bearing capacity and decreased the settlement of the superstructure. As a whole, the monitoring and numerical simulation results were in good consistency with one another in this practically important project.

The Effects of Shear Capacity on the Locations and Sizes of New Opening in Existing Reinforced Concrete Beams (기존 철근콘크리트 보에서 신설 개구부의 위치와 크기가 전단내력에 미치는 효과)

  • 강민철;이주나;연규원;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.891-896
    • /
    • 2000
  • It is necessary to drill new opening in an existing R.C beam either for service ducts and pipes or the determination of in place concrete strength. Therefore, to simulate in this study, 18-R.C beams were fabricated with circular openings. The major parameters considered are the sizes, location of opening and cut-off stirrup. These beams are tested shear failure and capacity under a point loading. The sizes of opening are changed 0.11, 0.2, 0.3 times of beam-depth and the locations of opening are divided into $X_1$ zone, $X_2$ zone, $X_3$zone. Loads are applied up to failure to observe the cracking initiation and propagation, initial diagonal cracking, midspan deflection. As a result, the sizes of opening with 0.11D and 0.2D in R.C beams without cutoff stirrup are profitable in $X_1$ and $X_3$zone. R.C beams with 0.3D and cutoff stirrup are advantageous in $X_3$zone.

Determining the Location of Urban Health Sub-center According to Geographic Accessibility (지리적 접근성을 이용한 도시지역 보건지소의 입지선정)

  • Lee, Kun-Sei;Kim, Chang-Yup;Kim, Yong-Ik;Shin, Young-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.29 no.2 s.53
    • /
    • pp.215-225
    • /
    • 1996
  • Decentralization to local governments and amending of Health Center Law are to promote the efforts of health planning at the level of local agencies. In the health facility planning, it is important to take into account that what to be built, where to be located, how far should be service area and so forth, because health facilities are immovable, and require capital as well as personnel and consumable supplies. The aim of our study, answering to the question of 'where to be located?', is to determine the best location of urban health sub-center. At the local level, planning is the matter of finding the best location of specific facilitiy, in relation to population needs. We confine the accessibility, which is basic to location planning, to geographic one. Location-Allocation Model is used to solve the problem where the location is to maximize geographic accessibility. To minimize the weighted travel distance, objective function, $R_k=\sum{\sum}a_{ij}w_{i}d_{ij}$ is used. Distances are measured indirectly by map measure-meter with 1:25,000 Suwon map, and each potential sites, 10 administrative Dongs in Kwonson Gu, Suwon, are weighted by each number of households, total population, maternal age group, child age group, old age group, Relief for the livelihood, and population/primary health clinics. We find that Kuwoon-Dong, Seodun-Dong, Seryu3-Dong, according the descending orders, are best sites which can minimize the weighted distance, and conclude that it is reasonable to determine the location of urban health sub-center among those sites.

  • PDF

Flip Chip Bump 3D Inspection Equipment using White Light Interferometer with Large F.O.V. (대시야 백색광 간섭계를 이용한 Flip Chip Bump 3차원 검사 장치)

  • Koo, Young Mo;Lee, Kyu Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.286-291
    • /
    • 2013
  • In this paper, in-line type flip chip bump 3D inspection equipment, using white light interferometer with large F.O.V., which is aimed to be used in flip chip bump test process is developed. Results of flip chip bump height measurement in many substrates and repeatability test results for the bumps in fixed location of each substrate are shown. Test results from test bench and those from developed flip chip bump 3D inspection equipment are compared and as a result repeatability is improved by reducing the impact of system vibration. A valuation basis for the testing quality of flip chip bump 3D inspection equipment is proposed.

Methods to determine the size of pant patterns with curved design lines and their three dimensional construction using 3D virtual fitting (곡선 절개형 바지의 패턴사이즈 변형방법과 가상착의곡면3D)

  • Lee, Heeran
    • Journal of Fashion Business
    • /
    • v.20 no.4
    • /
    • pp.153-171
    • /
    • 2016
  • With the advent of smart clothing for health care and sports, the sophisticated designs with curved seams are drawing attention. One of the problems in those clothing is to determine the design curves in 2D pattern, such that it corresponds to the lines on the intended 3D body. Moreover, the difficulty increases when the original pattern needs to be changed for various sizes and body types. We compare two methods of pattern enlargement in this paper: one is the offset/projection type, and the other is the split grading type. For the enlarged pattern with offset/projection type, the 3D surface offset was first adopted to transform the standard lower body to the target larger size; next, the design lines were projected to the new 3D surface, following which the 3D pattern was developed from the newly transformed 3D surface. In the second method, the enlarged pant patterns were developed by the split grading method. Here, a 3D pattern was developed from the initial body, and then enlarged to the target size by the conventional split grading method. Two feminine pants patterns were examined by 3D virtual fitting. We observed that the 3D offset/projection pants pattern was well fitted, having an evenly distributed surplus, as compared with the sample developed using the split grading method. The difference between the two patterns were apparent at the location where several curved lines merged.

Video Mosaics in 3D Space

  • Chon, Jaechoon;Fuse, Takashi;Shimizu, Eihan
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.390-392
    • /
    • 2003
  • Video mosaicing techniques have been widely used in virtual reality environments. Especially in GIS field, video mosaics are becoming more and more common in representing urban environments. Such applications mainly use spherical or panoramic mosaics that are based on images taken from a rotating camera around its nodal point. The viewpoint, however, is limited to location within a small area. On the other hand, 2D-mosaics, which are based on images taken from a translating camera, can acquire data in wide area. The 2D-mosaics still have some problems : it can‘t be applied to images taken from a rotational camera in large angle. To compensate those problems , we proposed a novel method for creating video mosaics in 3D space. The proposed algorithm consists of 4 steps: feature -based optical flow detection, camera orientation, 2D-image projection, and image registration in 3D space. All of the processes are fully automatic and successfully implemented and tested with real images.

  • PDF

Real-time Reefer Container Monitoring System based on IoT (IoT 기반 실시간 냉장컨테이너 상태 모니터링 시스템)

  • Moon, Young-Sik;Jung, Jun-Woo;Choi, Sung-Pill;Kim, Tae-Hoon;Lee, Byung-Ha;Kim, Jae-Joong;Choi, Hyung-Lim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.629-635
    • /
    • 2015
  • In this paper, we propose the reefer container monitoring system that not only monitors internal temperature, humidity of reefer container but also tracks the real-time location using GPS. It consists of a tag of information of situation using 433MHz RF transmitter(communication), GPS to track the real-time location and a device using WCDMA/GSM communication to transmit information to the server. We tested by applying the proposed system in reefer containers with yellow melons, melons transported from Korea to Singapore to track the location and check the temperature and the humidity. The result of this test is that there is a temperature difference around 1.7 degree depending on the position of inside of container and maintains the humidity stably about 97%. If we apply this proposed system to agricultural marketing, it is possible to get the time that fruits start to decay and minimize the loss of fruits by decaying during shipping.