• 제목/요약/키워드: 3D Local Features

검색결과 75건 처리시간 0.022초

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

Evaluation of Histograms Local Features and Dimensionality Reduction for 3D Face Verification

  • Ammar, Chouchane;Mebarka, Belahcene;Abdelmalik, Ouamane;Salah, Bourennane
    • Journal of Information Processing Systems
    • /
    • 제12권3호
    • /
    • pp.468-488
    • /
    • 2016
  • The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.

3차원 Co-occurrence 특징을 이용한 지형분류 (Terrain Classification Using Three-Dimensional Co-occurrence Features)

  • 진문광;우동민;이규원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.45-50
    • /
    • 2003
  • Texture analysis has been efficiently utilized in the area of terrain classification. In this application features have been obtained in the 2D image domain. This paper suggests 3D co-occurrence texture features by extending the concept of co-occurrence to 3D world. The suggested 3D features are described using co-occurrence histogram of digital elevations at two contiguous position as co-occurrence matrix. The practical construction of co-occurrence matrix limits the number of levels of digital elevation. If the digital elevation is quantized into the number of levels over the whole DEM(Digital Elevation Map), the distinctive features can not be obtained. To resolve the quantization problem, we employ local quantization technique which preserves the variation of elevations. Experiments has been carried out to verify the proposed 3D co-occurrence features, and the addition of the suggested features significantly improves the classification accuracy.

Human Activity Recognition Based on 3D Residual Dense Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제23권12호
    • /
    • pp.1540-1551
    • /
    • 2020
  • Aiming at the problem that the existing human behavior recognition algorithm cannot fully utilize the multi-level spatio-temporal information of the network, a human behavior recognition algorithm based on a dense three-dimensional residual network is proposed. First, the proposed algorithm uses a dense block of three-dimensional residuals as the basic module of the network. The module extracts the hierarchical features of human behavior through densely connected convolutional layers; Secondly, the local feature aggregation adaptive method is used to learn the local dense features of human behavior; Then, the residual connection module is applied to promote the flow of feature information and reduced the difficulty of training; Finally, the multi-layer local feature extraction of the network is realized by cascading multiple three-dimensional residual dense blocks, and use the global feature aggregation adaptive method to learn the features of all network layers to realize human behavior recognition. A large number of experimental results on benchmark datasets KTH show that the recognition rate (top-l accuracy) of the proposed algorithm reaches 93.52%. Compared with the three-dimensional convolutional neural network (C3D) algorithm, it has improved by 3.93 percentage points. The proposed algorithm framework has good robustness and transfer learning ability, and can effectively handle a variety of video behavior recognition tasks.

지역적 불변특징 기반의 3차원 환경인식 및 모델링 (Recognition and Modeling of 3D Environment based on Local Invariant Features)

  • 장대식
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.31-39
    • /
    • 2006
  • 본 논문에서는 지능로봇. 지능형자동차. 지능형빌딩 등에 다양하게 활용될 수 있는 3차원 환경과 여기에 포함된 물체의 실시간 인식을 위한 새로운 접근 방법을 제안한다. 본 논문에서는 먼저 사람이 환경을 인식하고 상호작용하는 데 사용하는 3가지 기본 원칙을 설정하고, 이 기본 원칙들을 이용하여 실시간 3차원 환경 및 물체 인식을 위한 통합된 방법을 제시한다. 이들 3가지 기본 원칙은 다음과 같다. 첫째, 전역 적인 평면 특징들을 인식함으로써 작업환경의 기하학적 구조에 대한 개략적 특성화를 고속으로 진행한다. 둘째, 작업환경 속에서 기존에 알려진 물체를 먼저 빠르게 인식하고 이를 데이터베이스 내에 저장되어 있는 물체의 모델로 교체한다. 셋째, 다중 해상도 Octree 표현 방법을 이용하여 기타 영역을 주어진 작업의 필요에 따라 적응적으로 실시간 모델링 한다. 본 논문에서는 3차원 SIFT로 언급되는 3차원 좌표를 가지는 SIFT특징들을 3차원 좌표정보와 함께 확장하여 사용함으로서 전역적 평면 특징의 빠른 추출, 고속의 물체 인식, 빠른 장면 정합 등의 기능에 활용하고 이와 동시에 스테레오 카메라로부터 입력되는 3차원 좌표의 잡음과 불완전성을 극복한다.

  • PDF

Self-Organizing Neural Network를 이용한 임펄스 노이즈 검출과 선택적 미디언 필터 적용 (Impulse Noise Detection Using Self-Organizing Neural Network and Its Application to Selective Median Filtering)

  • 이종호;동성수;위재우;송승민
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권3호
    • /
    • pp.166-173
    • /
    • 2005
  • Preserving image features, edges and details in the process of impulsive noise filtering is an important problem. To avoid image blurring, only corrupted pixels must be filtered. In this paper, we propose an effective impulse noise detection method using Self-Organizing Neural Network(SONN) which applies median filter selectively for removing random-valued impulse noises while preserving image features, edges and details. Using a $3\times3$ window, we obtain useful local features with which impulse noise patterns are classified. SONN is trained with sample image patterns and each pixel pattern is classified by its local information in the image. The results of the experiments with various images which are the noise range of $5-15\%$ show that our method performs better than other methods which use multiple threshold values for impulse noise detection.

Estimating 3-D surface geometrical features on the basis of surface curvature consistency

  • Zha, H.B.;Muramatsu, S.;Nagata, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.54-59
    • /
    • 1993
  • This paper presents a method of estimating 3-D surface geometrical features that are necessary for 3-D object recognition and image interpretation. The features, such as surface needle maps and curvatures, are computed from range or intensity images. In general, the range and intensity images are prone to noises, and hence the features computed by differentiation calculi on such a noisy image are hardly applicable to industrial recognition tasks. In our approach, we try to obtain a more accurate estimate of the features by using a least-squares minimization procedure subject to local curvature consistency constraints. The algorithm is robust with respect to noises and is completely independent of the viewpoint at which the image is taken. The performance of the ajgoritlim is evaluated using both synthetic data and real intensity images.

  • PDF

A Study on 3D Road Extraction From Three Linear Scanner

  • Yun, SHI;SHIBASAKI, Ryosuke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.301-303
    • /
    • 2003
  • The extraction of 3D road network from high-resolution aerial images is still one of the current challenges in digital photogrammetry and computer vision. For many years, there are many researcher groups working for this task, but unt il now, there are no papers for doing this with TLS (Three linear scanner), which has been developed for the past several years, and has very high-resolution (about 3 cm in ground resolution). In this paper, we present a methodology of road extraction from high-resolution digital imagery taken over urban areas using this modern photogrammetry’s scanner (TLS). The key features of the approach are: (1) Because of high resolution of TLS image, our extraction method is especially designed for constructing 3D road map for next -generation digital navigation map; (2) for extracting road, we use the global context of the intensity variations associated with different features of road (i.e. zebra line and center line), prior to any local edge. So extraction can become comparatively easy, because we can use different special edge detector according different features. The results achieved with our approach show that it is possible and economic to extract 3D road data from Three Linear Scanner to construct next -generation digital navigation road map.

  • PDF

A Rotation Invariant Image Retrieval with Local Features

  • You, Hee-Jun;Shin, Dae-Kyu;Kim, Dong-Hoon;Kim, Hyun-Sool;Park, Sang-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.332-338
    • /
    • 2003
  • Content-based image retrieval is the research of images from database, that are visually similar to given image examples. Gabor functions and Gabor filters are regarded as excellent methods for feature extraction and texture segmentation. However, they have a disadvantage not to perform well in case of a rotated image because of its direction-oriented filter. This paper proposes a method of extracting local texture features from blocks with central interest points detected in an image and a rotation invariant Gabor wavelet filter. We also propose a method of comparing pattern histograms of features classified by VQ (Vector Quantization) among images.

Global Feature Extraction and Recognition from Matrices of Gabor Feature Faces

  • Odoyo, Wilfred O.;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • 제9권2호
    • /
    • pp.207-211
    • /
    • 2011
  • This paper presents a method for facial feature representation and recognition from the Covariance Matrices of the Gabor-filtered images. Gabor filters are a very powerful tool for processing images that respond to different local orientations and wave numbers around points of interest, especially on the local features on the face. This is a very unique attribute needed to extract special features around the facial components like eyebrows, eyes, mouth and nose. The Covariance matrices computed on Gabor filtered faces are adopted as the feature representation for face recognition. Geodesic distance measure is used as a matching measure and is preferred for its global consistency over other methods. Geodesic measure takes into consideration the position of the data points in addition to the geometric structure of given face images. The proposed method is invariant and robust under rotation, pose, or boundary distortion. Tests run on random images and also on publicly available JAFFE and FRAV3D face recognition databases provide impressively high percentage of recognition.