CT images are sequential images that provide medical doctors helpful information for treatment and surgical operation. It is also widely used for the 3D reconstruction of human bone and organs. In the 3D reconstruction, the quality of the reconstructed 3D model heavily depends on the segmentation results. In this paper, we propose an algorithm suitable for the segmentation of teeth and the maxilofacial bone.
Ye, Chul-Soo;Kim, Kyoung-Ok;Lee, Jong-Hun;Lee, Kwae-Hi
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.59-64
/
2002
This paper presents a method for line segment extraction for 3-d building reconstruction. Building roofs are described as a set of planar polygonal patches, each of which is extracted by watershed-based image segmentation, line segment matching and coplanar grouping. Coplanar grouping and polygonal patch formation are performed per region by selecting 3-d line segments that are matched using epipolar geometry and flight information. The algorithm has been applied to high resolution aerial images and the results show accurate 3-d building reconstruction.
전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
/
pp.104-108
/
2001
In this paper, the 3-D measurement method of moving object with a laser and one camera system for image processing method is presented. The method of segmentation image in conventional method, the error are generated by the threshold values. In this paper, to improve these problem for segmentation image, the calculation of weighting factor using brightness distribution by histogram of stored images are proposed. Therefore the image erosion and spread are improved, the correct and reliable informations can be measured. In this paper, the system of 3-D extracting information using the proposed algorithm can be applied to manufactory automation, building automation, security guard system, and detecting information system for all of the industry areas.
Convolutional Neural Networks (CNNs) have recently been gaining popularity in the medical image analysis field because of their image segmentation capabilities. In this paper, we present a CNN that performs automated brain tumor segmentations of sparsely annotated 3D Magnetic Resonance Imaging (MRI) scans. Our CNN is based on 3D U-net architecture, and it includes separate Dilated and Depth-wise Convolutions. It is fully-trained on the BraTS 2018 data set, and it produces more accurate results even when compared to the winners of the BraTS 2017 competition despite having a significantly smaller amount of parameters.
In this paper, we proposed a system that visualizes a hologram device in 3D by utilizing the CT image segmentation function based on artificial intelligence deep learning. The input axial CT medical image is converted into Sagittal and Coronal, and the input image and the converted image are divided into 3D volumes using ResUNet, a deep learning model. In addition, the volume is created by segmenting the tumor region in the segmented liver image. Each result is integrated into one 3D volume, displayed in a medical image viewer, and converted into a video. When the converted video is transmitted to the hologram device and output from the device, a 3D image with a sense of space can be checked. As for the performance of the deep learning model, in Axial, the basic input image, DSC showed 95.0% performance in liver region segmentation and 67.5% in liver tumor region segmentation. If the system is applied to a real-world care environment, additional physical contact is not required, making it safer for patients to explain changes before and after surgery more easily. In addition, it will provide medical staff with information on liver and liver tumors necessary for treatment or surgery in a three-dimensional manner, and help patients manage them after surgery by comparing and observing the liver before and after liver resection.
본 논문은 단일영상의 실안개 정보와 상대적 높이 단서를 기반으로 깊이 지도를 생성하고, 이를 이용하여 2D/3D 변환을 하는 기법에 관한 연구이다. 기존의 실안개 정보만을 깊이 지도로써 이용하는 경우, 안개가 없는 영상에서 오류가 발생할 수 있다. 본 논문에서는 이러한 오류를 줄이기 위해, 상대적 높이 단서 기반의 깊이 지도를 생성하고, 실안개 정보와 결합하는 방법을 제안하였다. 또한 Mean Shift Segmentation을 이용한 gray scale 영상과 실안개 정보의 깊이 지도를 결합하여 객체의 경계를 선명화함으로써 3D 영상의 품질을 향상시킬 수 있도록 하였다. 입력영상과 최종 깊이 지도를 DIBR(Depth Image Based Rendering)을 통해 좌영상과 우영상의 시점영상을 생성하고, 적청영상의 형태로 결합함으로써 3D 영상을 생성하였고, 깊이 지도간의 PSNR을 측정하여 검증하였다.
In this paper, an automated segmentation algorithm is proposed for MR brain images using T1-weighted, T2-weighted, and PD images complementarily. The proposed segmentation algorithm is composed of 3 steps. In the first step, cerebrum images are extracted by putting a cerebrum mask upon the three input images. In the second step, outstanding clusters that represent inner tissues of the cerebrum are chosen among 3-dimensional (3D) clusters. 3D clusters are determined by intersecting densely distributed parts of 2D histogram in the 3D space formed with three optimal scale images. Optimal scale image best describes the shape of densely distributed parts of pixels in 2D histogram. In the final step, cerebrum images are segmented using FCM algorithm with it’s initial centroid value as the outstanding cluster’s centroid value. The proposed segmentation algorithm complements the defect of FCM algorithm, being influenced upon initial centroid, by calculating cluster’s centroid accurately And also can get better segmentation results from the proposed segmentation algorithm with multi spectral analysis than the results of single spectral analysis.
A segmentation is a prior processing for medical image analysis and 3D reconstruction. This Paper provides the method to segment 3D Visible Human color images. Firstly, the reference images that have a initial curve are segmented using Balloon and the results are propagated to the adjacent images. In the propagation processing, the result of the adjacent slice is modified by Edge-limited SRG Finally, the 3D Balloon improves the segmentation results of each 2D slice. the proposed method's performance was verified through the experiments to segment thigh muscles of Visible Human color images.
In this paper, implementation mode image segmentation method for separate image is presented. The method of segmentation image in conventional method, the error are generated by the threshold values. To improve these problem for segmentation image, the calculation of weighting factor using brightness distribution by histogram of stored images are proposed. For safe image of object and laser image, the computed weighting factor is set to the threshold value. Therefore the image erosion and spread are improved, the correct and reliable informations can be measured. In this paper, the system of 3-D extracting information using the proposed algorithm can be applied to manufactory automation, building automation, security guard system, and detecting information system for all of the industry areas.
Automatic segmentation of brain MRI data usually leaves some segmentation errors behind that are to be subsequently removed interactively, using computer graphics tools. This interactive removal is normally performed by operating on individual 2D slices. It is very tedious and still leaves some segmentation errors which are not visible on the slices. We have proposed to perform a novel 3D interactive correction of brain segmentation errors introduced by the fully automatic segmentation algorithms. We have developed the tool which is based on 3D semi-automatic propagation algorithm. The paper describes the implementation principles of the proposed tool and illustrates its application.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.