• Title/Summary/Keyword: 3D Image Segmentation

Search Result 263, Processing Time 0.033 seconds

치과용 CT영상의 3차원 Visualization을 위한 Segmentation에 관한 연구 (A Study of Segmentation for 3D Visualization In Dental Computed Tomography image)

  • 민상기;채옥삼
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(3)
    • /
    • pp.177-180
    • /
    • 2000
  • CT images are sequential images that provide medical doctors helpful information for treatment and surgical operation. It is also widely used for the 3D reconstruction of human bone and organs. In the 3D reconstruction, the quality of the reconstructed 3D model heavily depends on the segmentation results. In this paper, we propose an algorithm suitable for the segmentation of teeth and the maxilofacial bone.

  • PDF

Image segmentation and line segment extraction for 3-d building reconstruction

  • Ye, Chul-Soo;Kim, Kyoung-Ok;Lee, Jong-Hun;Lee, Kwae-Hi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.59-64
    • /
    • 2002
  • This paper presents a method for line segment extraction for 3-d building reconstruction. Building roofs are described as a set of planar polygonal patches, each of which is extracted by watershed-based image segmentation, line segment matching and coplanar grouping. Coplanar grouping and polygonal patch formation are performed per region by selecting 3-d line segments that are matched using epipolar geometry and flight information. The algorithm has been applied to high resolution aerial images and the results show accurate 3-d building reconstruction.

  • PDF

3-D Laser Measurement using Mode Image Segmentation Method

  • Moon Hak-Yong;Park Jong-Chan;Han Wun-Dong;Cho Heung-Gi;Jeon Hee-Jong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.104-108
    • /
    • 2001
  • In this paper, the 3-D measurement method of moving object with a laser and one camera system for image processing method is presented. The method of segmentation image in conventional method, the error are generated by the threshold values. In this paper, to improve these problem for segmentation image, the calculation of weighting factor using brightness distribution by histogram of stored images are proposed. Therefore the image erosion and spread are improved, the correct and reliable informations can be measured. In this paper, the system of 3-D extracting information using the proposed algorithm can be applied to manufactory automation, building automation, security guard system, and detecting information system for all of the industry areas.

  • PDF

Automatic Volumetric Brain Tumor Segmentation using Convolutional Neural Networks

  • Yavorskyi, Vladyslav;Sull, Sanghoon
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.432-435
    • /
    • 2019
  • Convolutional Neural Networks (CNNs) have recently been gaining popularity in the medical image analysis field because of their image segmentation capabilities. In this paper, we present a CNN that performs automated brain tumor segmentations of sparsely annotated 3D Magnetic Resonance Imaging (MRI) scans. Our CNN is based on 3D U-net architecture, and it includes separate Dilated and Depth-wise Convolutions. It is fully-trained on the BraTS 2018 data set, and it produces more accurate results even when compared to the winners of the BraTS 2017 competition despite having a significantly smaller amount of parameters.

  • PDF

딥러닝을 이용한 CT 영상의 간과 종양 분할과 홀로그램 시각화 기법 연구 (A Study on the Liver and Tumor Segmentation and Hologram Visualization of CT Images Using Deep Learning)

  • 김대진;김영재;전영배;황태식;최석원;백정흠;김광기
    • 한국멀티미디어학회논문지
    • /
    • 제25권5호
    • /
    • pp.757-768
    • /
    • 2022
  • In this paper, we proposed a system that visualizes a hologram device in 3D by utilizing the CT image segmentation function based on artificial intelligence deep learning. The input axial CT medical image is converted into Sagittal and Coronal, and the input image and the converted image are divided into 3D volumes using ResUNet, a deep learning model. In addition, the volume is created by segmenting the tumor region in the segmented liver image. Each result is integrated into one 3D volume, displayed in a medical image viewer, and converted into a video. When the converted video is transmitted to the hologram device and output from the device, a 3D image with a sense of space can be checked. As for the performance of the deep learning model, in Axial, the basic input image, DSC showed 95.0% performance in liver region segmentation and 67.5% in liver tumor region segmentation. If the system is applied to a real-world care environment, additional physical contact is not required, making it safer for patients to explain changes before and after surgery more easily. In addition, it will provide medical staff with information on liver and liver tumors necessary for treatment or surgery in a three-dimensional manner, and help patients manage them after surgery by comparing and observing the liver before and after liver resection.

실안개와 상대적 높이 단서 기반의 깊이 지도를 이용한 2D/3D 변환 기법 (2D/3D conversion method using depth map based on haze and relative height cue)

  • 한성호;김요섭;이종용;이상훈
    • 디지털융복합연구
    • /
    • 제10권9호
    • /
    • pp.351-356
    • /
    • 2012
  • 본 논문은 단일영상의 실안개 정보와 상대적 높이 단서를 기반으로 깊이 지도를 생성하고, 이를 이용하여 2D/3D 변환을 하는 기법에 관한 연구이다. 기존의 실안개 정보만을 깊이 지도로써 이용하는 경우, 안개가 없는 영상에서 오류가 발생할 수 있다. 본 논문에서는 이러한 오류를 줄이기 위해, 상대적 높이 단서 기반의 깊이 지도를 생성하고, 실안개 정보와 결합하는 방법을 제안하였다. 또한 Mean Shift Segmentation을 이용한 gray scale 영상과 실안개 정보의 깊이 지도를 결합하여 객체의 경계를 선명화함으로써 3D 영상의 품질을 향상시킬 수 있도록 하였다. 입력영상과 최종 깊이 지도를 DIBR(Depth Image Based Rendering)을 통해 좌영상과 우영상의 시점영상을 생성하고, 적청영상의 형태로 결합함으로써 3D 영상을 생성하였고, 깊이 지도간의 PSNR을 측정하여 검증하였다.

MR Brain Image Segmentation Using Clustering Technique

  • Yoon, Ock-Kyung;Kim, Dong-Whee;Kim, Hyun-Soon;Park, Kil-Houm
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.450-453
    • /
    • 2000
  • In this paper, an automated segmentation algorithm is proposed for MR brain images using T1-weighted, T2-weighted, and PD images complementarily. The proposed segmentation algorithm is composed of 3 steps. In the first step, cerebrum images are extracted by putting a cerebrum mask upon the three input images. In the second step, outstanding clusters that represent inner tissues of the cerebrum are chosen among 3-dimensional (3D) clusters. 3D clusters are determined by intersecting densely distributed parts of 2D histogram in the 3D space formed with three optimal scale images. Optimal scale image best describes the shape of densely distributed parts of pixels in 2D histogram. In the final step, cerebrum images are segmented using FCM algorithm with it’s initial centroid value as the outstanding cluster’s centroid value. The proposed segmentation algorithm complements the defect of FCM algorithm, being influenced upon initial centroid, by calculating cluster’s centroid accurately And also can get better segmentation results from the proposed segmentation algorithm with multi spectral analysis than the results of single spectral analysis.

  • PDF

Balloon을 이용한 3차원 Visible human 컬러 영상의 분할 방법 (Segmentation of 3D Visible Human Color Images by Balloon)

  • 김한영;김동성;강흥식
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.73-76
    • /
    • 2001
  • A segmentation is a prior processing for medical image analysis and 3D reconstruction. This Paper provides the method to segment 3D Visible Human color images. Firstly, the reference images that have a initial curve are segmented using Balloon and the results are propagated to the adjacent images. In the propagation processing, the result of the adjacent slice is modified by Edge-limited SRG Finally, the 3D Balloon improves the segmentation results of each 2D slice. the proposed method's performance was verified through the experiments to segment thigh muscles of Visible Human color images.

  • PDF

물체 인식을 위한 개선된 모드 영상 분할 기법 (Implementation Mode Image Segmentation Method for Object Recognition)

  • 문학룡;한운동;조흥기;한성용;전희종
    • 전기학회논문지P
    • /
    • 제51권1호
    • /
    • pp.39-44
    • /
    • 2002
  • In this paper, implementation mode image segmentation method for separate image is presented. The method of segmentation image in conventional method, the error are generated by the threshold values. To improve these problem for segmentation image, the calculation of weighting factor using brightness distribution by histogram of stored images are proposed. For safe image of object and laser image, the computed weighting factor is set to the threshold value. Therefore the image erosion and spread are improved, the correct and reliable informations can be measured. In this paper, the system of 3-D extracting information using the proposed algorithm can be applied to manufactory automation, building automation, security guard system, and detecting information system for all of the industry areas.

3D INTERACTIVE SEGMENTATION OF BRAIN MRI

  • Levinski, Konstantin;Sourin, Alexei;Zagorodnov, Vitali
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.55-58
    • /
    • 2009
  • Automatic segmentation of brain MRI data usually leaves some segmentation errors behind that are to be subsequently removed interactively, using computer graphics tools. This interactive removal is normally performed by operating on individual 2D slices. It is very tedious and still leaves some segmentation errors which are not visible on the slices. We have proposed to perform a novel 3D interactive correction of brain segmentation errors introduced by the fully automatic segmentation algorithms. We have developed the tool which is based on 3D semi-automatic propagation algorithm. The paper describes the implementation principles of the proposed tool and illustrates its application.

  • PDF