Since the recent launch of Microsoft Xbox Kinect, research on 3D human pose estimation has attracted a lot of attention in the computer vision community. Kinect shows impressive estimation accuracy and real-time performance on massive graphics processing unit hardware. In this paper, we focus on further reducing the computation complexity of the existing state-of-the-art method to make the real-time 3D human pose estimation functionality applicable to devices with lower computing power. As a result, we propose two simple approaches to speed up the random-forest-based human pose estimation method. In the original algorithm, the random forest classifier is applied to all pixels of the segmented human depth image. We first use a multi-scale approach to reduce the number of such calculations. Second, the complexity of the random forest classification itself is decreased by the proposed cascade approach. Experiment results for real data show that our method is effective and works in real time (30 fps) without any parallelization efforts.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.3136-3150
/
2015
A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.
It is widely recognized that for 3D human pose estimation (HPE), dataset acquisition is expensive and the effectiveness of augmentation techniques of conventional visual recognition tasks is limited. We address these difficulties by presenting a simple but effective method that augments input images in terms of viewpoints when training a 3D human pose estimation (HPE) model. Our intuition is that meaningful variants of the input images for HPE could be obtained by viewing a human instance in the images from an arbitrary viewpoint different from that in the original images. The core idea is to synthesize new images that have self-occlusion and thus are difficult to predict at different viewpoints even with the same pose of the original example. We incorporate this idea into the training procedure of the 3D HPE model as an augmentation stage of the input samples. We show that a strategy for augmenting the synthesized example should be carefully designed in terms of the frequency of performing the augmentation and the selection of viewpoints for synthesizing the samples. To this end, we propose a new metric to measure the prediction difficulty of input images for 3D HPE in terms of the distance between corresponding keypoints on both sides of a human body. Extensive exploration of the space of augmentation probability choices and example selection according to the proposed distance metric leads to a performance gain of up to 6.2% on Human3.6M, the well-known pose estimation dataset.
최근 딥러닝 기술이 발전함에 따라 많은 컴퓨터 비전 연구 분야에서 주목할 만한 성과들이 지속적으로 나오고 있다. 단일 이미지를 기반으로 사람의 2차원 및 3차원 포즈를 추정하는 연구에서도 비약적인 성능향상을 보여주고 있으며, 많은 연구자들이 문제의 범위를 확장하며 활발한 연구 활동을 진행하고 있다. 사람의 포즈 추정은 다양한 응용 분야가 존재하고, 특히 이미지나 비디오 분석에서 사람의 포즈는 행동 및 상태, 의도 파악을 위한 핵심 요소가 되기 때문에 상당히 중요한 연구 분야이다. 이러한 배경에 따라 본 논문은 단일 이미지를 기반으로 한 사람의 포즈 추정 기술에 대한 연구 동향을 살펴보고자 한다. 강인하고 정확한 문제 해결을 위해 다양한 연구 활동 결과가 존재한다는 점에서 본 논문에서는 사람의 포즈 추정 연구를 2차원 및 3차원 포즈 추정에 대해서 나누어 살펴보고자 한다. 끝으로 연구에 필요한 데이터 세트 및 사람의 포즈 추정 기술을 적용하는 다양한 연구 사례를 살펴볼 것이다.
최근 영상 감시 분야에서는 지능형 영상 감시 시스템에 딥 러닝 기반 학습 방법이 적용되어 범죄, 화재, 이상 현상과 같은 다양한 이벤트들을 강건하게 탐지 할 수 있게 되었다. 그러나 3차원 실세계를 2차원 영상으로 투영시키면서 발생하는 3차원 정보의 손실로 인하여 폐색 문제가 발생하기 때문에 올바르게 객체를 탐지하고, 자세를 추정하기 위해서는 폐색 문제를 고려하는 것이 필요하다. 따라서 본 연구에서는 기존 RGB 정보에 깊이 정보를 추가하여 객체 탐지 과정에서 나타나는 폐색 문제를 해결하여 움직이는 객체를 탐지하고, 탐지된 영역에서 컨볼루션 신경망을 이용하여 인간의 관절 부위인 14개의 키포인트의 위치를 예측한다. 그 다음 자세 추정 과정에서 발생하는 자가 폐색 문제를 해결하기 위하여 2차원 키포인트 예측 결과와 심층 신경망을 이용하여 자세 추정의 범위를 3차원 공간상으로 확장함으로써 3차원 인간 자세 추정 방법을 설명한다. 향후, 본 연구의 2차원 및 3차원 자세 추정 결과는 인간 행위 인식을 위한 용이한 데이터로 사용되어 산업 기술 발달에 기여 할 수 있다.
본 논문은 비전 기반 신체 제스처 인식 결과를 입력인터페이스로 사용하는 상호작용 콘텐츠에 대해 기술한다. 제작된 콘텐츠 는 아시아의 공통문화요소인 도깨비를 소재로 사용하여 지역 문화에 친숙하게 접근할 수 있도록 하였다. 그리고 콘텐츠를 구성 하는 시나리오는 도깨비와의 결투장면에서 사용자의 제스처 인식을 통해 결투를 진행하므로 사용자는 자연스럽게 콘텐츠 시나리오에 몰입할 수 있다. 시나리오의 후반부에서는 사용자는 시간과 공간이 다른 다중의 결말을 선택할 수 있다. 신체 제스처 인식 부분에서는 키넥트(KINECT)를 통해 얻을 수 있는 각 신체 부분의 3차원좌표를 이용하여 정지동작인 포즈를 활용한다. 비전기반 3차원 인체 포즈 인식 기술은 HCI(Human-Computer Interaction)에서 인간의 제스처를 전달하기 위한 방법으로 사용된다. 특수한 환경에서 단순한 2차원 움직임 포즈만 인식할 수 있는 2차원 포즈모델 기반 인식 방법에 비해 3차원 관절을 묘사한 포즈모델은 관절각에 대한 정보와 신체 부위의 모양정보를 선행지식으로 사용할 수 있어서 좀 더 일반적인 환경에서 복잡한 3차원 포즈도 인식할 수 있다는 장점이 있다. 인간이 사용하는 제스처는 정지동작인 포즈들의 연속적인 동작을 통해 표현이 가능하므로 HMM을 이용하여 정지동작 포즈들로 구성된 제스처를 인식하였다. 본 논문에서 기술한 체험형 콘텐츠는 사용자가 부가적인 장치의 사용 없이 제스처 인식 결과를 입력인터페이스로 사용하였으며 사용자의 몸동작만으로 자연스럽게 콘텐츠를 조작할 수 있도록 해준다. 본 논문에서 기술한 체험형 콘텐츠는 평소 접하기 어려운 도깨비를 이용하여 사용자와 실시간 상호작용이 가능케 함으로써 몰입도와 재미를 향상시키고자 하였다.
본 논문은 단안 카메라로부터 입력된 영상에서 모션 기반의 검색을 사용한 동적인 사람 자세 추적 방법을 제안한다. 제안된 방법은 3차원 공간에서 하나의 사람 자세 후보를 생성하고, 생성된 자세 후보를 2차원 이미지 공간으로 투영하여, 투영된 사람 자세 후보와 입력 이미지와의 특징 값 유사성을 비교한다. 이 과정을 정해진 조건을 만족 할 때까지 반복하여 이미지와의 유사성과, 신체 부분간 연결성이 가장 좋은 3차원 자세를 추정한다. 제안된 방법에서는 입력 이미지에 적합한 3차원 자세를 검색할 때, 2차원 영상에서 추정된 신체 각 부분들의 모션 정보를 사용해 검색 공간을 정하고 정해진 검색 공간에서 탐색하여 사람의 자세를 추정한다. 2차원 이미지 모션은 비교적 높은 제약이 있어서 검색 공간을 의미있게 줄일 수 있다. 이 방법은 모션 추정이 검색 공간을 효율적으로 할당 해주고, 자세 추적이 여러 가지 다양한 모션에 적응할 수 있다는 장점을 가진다
Human Pose Estimation (HPE) which localizes the human body joints becomes a high potential for high-level applications in the field of computer vision. The main challenges of HPE in real-time are occlusion, illumination change and diversity of pose appearance. The single RGB image is fed into HPE framework in order to reduce the computation cost by using depth-independent device such as a common camera, webcam, or phone cam. However, HPE based on the single RGB is not able to solve the above challenges due to inherent characteristics of color or texture. On the other hand, depth information which is fed into HPE framework and detects the human body parts in 3D coordinates can be usefully used to solve the above challenges. However, the depth information-based HPE requires the depth-dependent device which has space constraint and is cost consuming. Especially, the result of depth information-based HPE is less reliable due to the requirement of pose initialization and less stabilization of frame tracking. Therefore, this paper proposes a new method of HPE which is robust in estimating self-occlusion. There are many human parts which can be occluded by other body parts. However, this paper focuses only on head self-occlusion. The new method is a combination of the RGB image-based HPE framework and the depth information-based HPE framework. We evaluated the performance of the proposed method by COCO Object Keypoint Similarity library. By taking an advantage of RGB image-based HPE method and depth information-based HPE method, our HPE method based on RGB-D achieved the mAP of 0.903 and mAR of 0.938. It proved that our method outperforms the RGB-based HPE and the depth-based HPE.
본 연구는 증강현실에서 적용할 캐릭터 생성에서 단일 이미지를 통해 여러 객체에 대한 3D 자세 추정 문제를 연구한다. 기존 top-down 방식에서는 이미지 내의 모든 객체를 먼저 감지하고, 그 후에 각각의 객체를 독립적으로 재구성한다. 문제는 이렇게 재구성된 객체들 사이의 중첩이나 깊이 순서가 불일치 하는 일관성 없는 결과가 발생할 수 있다. 본 연구의 목적은 이러한 문제점을 해결하고, 장면 내의 모든 객체에 대한 일관된 3D 재구성을 제공하는 단일 네트워크를 개발하는 것이다. SMPL 매개변수체를 기반으로 한 인체 모델을 top-down 프레임워크에 통합이 중요한 선택이 되었으며, 이를 통해 거리 필드 기반의 충돌 손실과 깊이 순서를 고려하는 손실 두 가지를 도입하였다. 첫 번째 손실은 재구성된 사람들 사이의 중첩을 방지하며, 두 번째 손실은 가림막 추론과 주석이 달린 인스턴스 분할을 일관되게 렌더링하기 위해 객체들의 깊이 순서를 조정한다. 이러한 방법은 네트워크에 이미지의 명시적인 3D 주석 없이도 깊이 정보를 제공하게 한다. 실험 결과, 기존의 Interpenetration loss 방법은 MuPoTS-3D가 114, PoseTrack이 654에 비해서 본 연구의 방법론인 Lp 손실로 네트워크를 훈련시킬 때 MuPoTS-3D가 34, PoseTrack이 202로 충돌수가 크게 감소하는 것으로 나타났다. 본 연구 방법은 표준 3D 자세벤치마크에서 기존 방법보다 더 나은 성능을 보여주었고, 제안된 손실들은 자연 이미지에서 더욱 일관된 재구성을 실현하게 하였다.
인간은 의사 표현을 위해 음성언어 뿐 아니라 몸짓 언어(body languages)를 많이 사용한다 이 몸짓 언어 중 대표적인 것은, 물론 손과 팔의 사용이다. 따라서 인간 팔의 운동 해석은 인간과 기계의 상호 작용(human-computer interaction)에 있어 매우 중요하다고 할 수 있다. 이러한 견지에서 본 논문에서는 다음과 같은 방법으로 컴퓨터비전을 이용한 인간팔의 3차원 자세 추정 방법을 제안하다. 먼저 팔의 운동이 대부분 회전 관절(revolute-joint)에 의해 이루어진다는 점에 착안하여, 컴퓨터 비전 시스템을 활용한 회전 관절의 3차원 운동 해석 기법을 제안한다. 이를 위해 회전 관절의 기구학적 모델링 기법(kinematic modeling techniques)과 컴퓨터 비전의 경사 투영 모델(perspective projection model)을 결합한다. 다음으로, 회전 관절의 3차원 운동해석 기법을 컴퓨터 비전을 이용한 인간 팔의 3차원 자세 추정 문제에 웅용한다. 그 기본 발상은 회전 관절의 3차원 운동 복원 알고리즘을 인간 팔의 각 관절에 순서 데로 적용하는 것이다. 본 알고리즘은 특히 유비쿼터스 컴퓨팅(ubiquitous computing)과 가상현실(virtual reality)를 위한 인간-컴퓨터 상호작용(human-computer interaction)이라는 응용을 목표로, 고수준의 정확도를 갖는 폐쇄구조 형태(closed-form)의 해를 구하는데 주력한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.