• Title/Summary/Keyword: 3D Fluid Simulation

Search Result 319, Processing Time 0.181 seconds

Simulations of the Dynamic Load in a Francis Runner based on measurements of Grid Frequency Variations

  • Ellingsen, Rakel;Storli, Pal-Tore
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.102-112
    • /
    • 2015
  • In the Nordic grid, a trend observed the recent years is the increase in grid frequency variations, which means the frequency is outside the normal range (49.9-50.1 Hz) more often. Variations in the grid frequency leads to changes in the speed of rotation of all the turbines connected to the grid, since the speed of rotation is closely related to the grid frequency for synchronous generators. When the speed of rotation changes, this implies that the net torque acting on the rotating masses are changed, and the material of the turbine runners must withstand these changes in torque. Frequency variations thus leads to torque oscillations in the turbine, which become dynamical loads that the runner must be able to withstand. Several new Francis runners have recently experienced cracks in the runner blades due to fatigue, obviously due to the runner design not taking into account the actual loads on the runner. In this paper, the torque oscillations and dynamic loads due to the variations in grid frequency are simulated in a 1D MATLAB program, and measured grid frequency is used as input to the simulation program. The maximum increase and decrease in the grid frequency over a 440 seconds interval have been investigated, in addition to an extreme event where the frequency decreased far below the normal range within a few seconds. The dynamic loading originating from grid frequency variations is qualitatively found by a constructed variable $T_{stress}$, and for the simulations presented here the variations in $T_{stress}$ are found to be around 3 % of the mean value, which is a relatively small dynamic load. The important thing to remember is that these dynamic loads come in addition to all other dynamic loads, like rotor-stator interaction and draft tube surges, and should be included in the design process, if not found to be negligible.

Effect on Vessel Motion Caused by Mitigation of Sloshing Impact Loads using Floaters (플로터를 이용한 슬로싱 충격하중 저감효과가 선체운동에 미치는 영향)

  • Nam, Jung-Woo;Kim, Kyung-Sung;Hwang, Sung-Chul;Heo, Jae-Kyung;Park, Jong-Chun;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • When a liquid cargo tank is partially filled with fluid, internal impact loads can be occurred from the vessel's motions. In this study, liquid sloshing problems with a thin top layer of particles with a lighter density than water and the coupling effects of the liquid-sloshing/vessel-motion were investigated in order to reduce the sloshing-induced impact loads. The PNU-MPS (Pusan-National-University-modified Moving Particle Simulation) method for solving the liquid motion inside a tank and the CHARM3D BEM (Boundary Element Method) based time-domain ship motion analysis program for vessel-motion simulation were coupled. From the simulation results, we could see that the floaters seemed to be quite effective at reducing the sloshing impact loads in the case of tank-only sloshing problems, but not as much for the coupling problem with vessel motion.

Performance Evaluation of Two-Equation Turbulence Models for 3D Wing-Body Configuration

  • Kwak, Ein-Keun;Lee, Nam-Hun;Lee, Seung-Soo;Park, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.307-316
    • /
    • 2012
  • Numerical simulations of 3D aircraft configurations are performed in order to understand the effects of turbulence models on the prediction of aircraft's aerodynamic characteristics. An in-house CFD code that solves 3D RANS equations and two-equation turbulence model equations are used. The code applies Roe's approximated Riemann solver and an AF-ADI scheme. Van Leer's MUSCL extrapolation with van Albada's limiter is also adopted. Various versions of Menter's $k-{\omega}$ SST turbulence models as well as Coakley's $q-{\omega}$ model are incorporated into the CFD code. Menter's $k-{\omega}$ SST models include the standard model, the 2003 model, the model incorporating the vorticity source term, and the model containing controlled decay. Turbulent flows over a wing are simulated in order to validate the turbulence models contained in the CFD code. The results from these simulations are then compared with computational results from the $3^{rd}$ AIAA CFD Drag Prediction Workshop. Numerical simulations of the DLR-F6 wing-body and wing-body-nacelle-pylon configurations are conducted and compared with computational results of the $2^{nd}$ AIAA CFD Drag Prediction Workshop. Aerodynamic characteristics as well as flow features are scrutinized with respect to the turbulence models. The results obtained from each simulation incorporating Menter's $k-{\omega}$ SST turbulence model variations are compared with one another.

A numerical study of a confined turbulent wall jet with an external stream

  • Yan, Zhitao;Zhong, Yongli;Cheng, Xu;McIntyre, Rory P.;Savory, Eric
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.101-109
    • /
    • 2018
  • Wall jet flow exists widely in engineering applications, including the simulation of thunderstorm downburst outflows, and has been investigated extensively by both experimental and numerical methods. Most previous studies focused on the scaling laws and self-similarity, while the effect of lip thickness and external stream height on mean velocity has not been examined in detail. The present work is a numerical study, using steady Reynolds-Averaged Navier Stokes (RANS) simulations at a Reynolds number of $3.5{\times}10^4$, of a turbulent plane wall jet with an external stream to investigate the influence of the wall jet domain on downstream development of the flow. The comparisons of flow characteristics simulated by the Reynolds stress turbulence model closure (Stress-omega, SWRSM) and experimental results indicate that this model may be considered reasonable for simulating the wall jet. The confined wall jet is further analyzed in a parametric study, with the results compared to the experimental data. The results indicate that the height and the width of the wind tunnel and the lip thickness of the jet nozzle have a great effect on the wall jet development. The top plate of the tunnel does not confine the development of the wall jet within 200b of the nozzle when the height of the tunnel is more than 40b (b is the height of jet nozzle). The features of the centerline flow in the mid plane of the 3D numerical model are close to those of the 2D simulated plane wall jet when the width of the tunnel is more than 20b.

Effect of Flow Direction on Temperature Uniformity in Solid Oxide Fuel Cell (고체산화물 연료전지의 유동방향에 따른 온도 균일성 영향)

  • Jeon, Dong Hyup;Shin, Dong-Ryul;Ryu, Kwang-Hyun;Song, Rak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.667-673
    • /
    • 2017
  • We investigated the temperature uniformity in an anode-supported solid oxide fuel cell, using the open source computational fluid dynamics (CFD) toolbox, OpenFOAM. Numerical simulation was performed in three different flow paths, i.e., co-flow, counter-flow, and cross-flow paths. Gas flow in a porous electrode was calculated using effective diffusivity while considering the effect of interconnect rib. A lumped internal resistance model derived from a semi-empirical correlation was implemented for the calculation of electrochemical reaction. The result showed that the counter-flow path displayed the most uniform temperature distribution.

Refinement of Projection Map Based on Artificial Neural Networks to Represent Noise-Reduced Foam Effects (노이즈가 완화된 거품 효과를 표현하기 위한 인공신경망 기반의 투영맵 정제)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.4
    • /
    • pp.11-24
    • /
    • 2021
  • In this paper, we propose an artificial neural network framework that can represent the foam effects expressed in liquid simulation in detail without noise. The position and advection of foam particles are calculated using the existing screen projection method, and the noise problem that appears in this process is solved through an proposed artificial neural network. The important thing in the screen projection approach is the projection map, but noise occurs in the projection map in the process of projecting momentum into the discretized screen space, and we efficiently solve this problem by using an artificial neural network-based denoising network. When the foam generating area is selected through the projection map, 2D is inversely transformed into 3D space to generate foam particles. We solve the existing denoising network problem in which small-scaled foam particles disappear. In addition, by integrating the proposed algorithm with the screen-space projection framework, all the advantages of this approach can be accommodated. As a result, it shows through various experiments whether it is possible to stably represent not only the clean foam effects but also the foam particles lost due to the denoising process.

Fluid Flow CFD Simulation in Lake during Summer Stratification (성층기 저수지 수체 인공순환 모사)

  • Lee, Yo-Sang;Ban, Yang-Jin;Sohn, Byeong-Yong;Kim, Young-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.952-956
    • /
    • 2010
  • 저수지에 설치된 물순환장치는 저수지 수문상황과 자연조건의 변화에 따라 유동특성이 상이하므로 연구자가 고려하는 다양한 조건에서 현장 측정하기는 불가능하다. 이런 문제를 대체하는 방안으로 전산유체유동(CFD) 모형을 적용한 모사를 실시함으로서 다양한 조건에 따른 효과를 평가할수 있게 된다. 본 연구에서는 전산유체유동을 통한 대류식 물순환장치의 유동영향범위와 수질변화 등을 평가하고, 다양한 조건에서 모사를 실시하여 최적운영방안을 도출하고 실제운영에 활용토록 하고자 한다. 수체거동을 모사하기 위해 실제 저수지를 형상화한 Domain을 3가지로 구성하였다. 첫번째는 반경 20m, 깊이 40m Domain에 물순환장치를 중앙에 설치한 것이며(D20), 두 번째는 반경 40m, 깊이 40m에 두 개의 물순환장치를 양쪽에 설치하였고(D40), 세 번째는 반경 100m, 깊이 40m로 설정(D100)하였고 양쪽에 두 개의 물순환장치를 설치한 것으로 구성하였다. CFD에 의한 개별 대류식 순환장치의 유동모사결과 D20은 시간의 경과에 따라 수온성층이 하강하는 현상이 나타났으며 이러한 결과로 판단할때 40m 간격으로 대류식 순환장치를 설치하여 운영하면 탈성층이 나타날 수 있을것으로 판단되었다. D40에 대하여 CFD에 의한 유동모사를 실시하였으며 시간의 경과에 따라 수온성층의 변화는 나타나지 않았다. 이러한 결과로 판단할때 40m 간격으로 한줄로 대류식 순환장치를 설치하여 운영하면 성층을 깨는 현상은 나타나지 않을 것으로 평가되었다. 반면 Dye테스트시 심층에서 상승한 수체는 수온성층 표면에서 수평방향으로 계속 퍼져 나가면서 옆장치에서 상승된 수체와 혼합이 활발히 이루어 지는 현상을 나타내었다. 장치간 거리가 100m인 대류식 물순환장치에 의한 유동모사시 수온성층의 변화는 전혀 나타나지 않았으며, Dye테스트시 심층에서 상승한 수체는 수온성층 위에서 수평방향으로 퍼져 나가면서 옆에서 가동되는 장치에서 상승된 수체와 혼합 현상을 나타내기는 하나 D40보다 혼합시간이 더 걸리는 것으로 나타났다.

  • PDF

Three-dimensional numerical modeling of sediment-induced density currents in a sedimentation basin (3차원 수치모의를 통한 침사지에서의 부유사 밀도류 해석)

  • An, Sang Do;Kim, Gi-Ho;Park, Won Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.383-394
    • /
    • 2013
  • A sedimentation basin is used to remove suspended sediments which can cause abrasive and erosive wear on hydraulic turbines of hydropower plants. This sediment erosion not only decreases efficiency of the turbine but also increases maintenance costs. In this study, the three-dimensional numerical simulations were carried out on the overseas hydropower project. The simulations of flow and suspended sediment concentration were obtained using FLOW-3D computational fluid dynamics code. The simulations provide removal efficiency of a sedimentation basin based on particle sizes. The influence of baffles on the flow field and the removal efficiency of suspended sediments in the sedimentation basin has been investigated. This paper also provides the numerical simulations for sediment-induced density currents that may occur in the sedimentation basin. The simulation results indicate that the formation of density currents decreases the removal efficiency. When a baffle is installed in the sedimentation basin, the baffle provides intensive settling zones resulting in increasing the sediments settling. Thus the enhanced removal efficiency can be achieved by installing the baffle inside the sedimentation basin.

A Novel Method for In Situ Stress Measurement by Cryogenic Thermal Cracking - Concept Theory and Numerical Simulation (저온 열균열 현상을 이용한 초기 응력 측정법 - 개념, 이론 및 수치해석)

  • Ryu, Chang-Ha;Ryu, Dong-Woo;Choi, Byung-Hee;Synn, Dong-Ho;Loui, John P.
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.343-354
    • /
    • 2008
  • A new method is suggested herein to measure the virgin earth stresses by means of a borehole. This novel concept is basically a combination of borehole stress relieving and borehole fracturing techniques. The destressing of the borehole is achieved by means of inducing thermal tensile stresses at the borehole periphery by using a cryogenic fluid such as Liquid Nitrogen($LN_2$). The borehole wall eventually develops fractures when the induced thermal stresses exceed the existing compressive stresses at the borehole periphery in addition to the tensile strength of the rock. The above concept is theoretically analyzed for its potential applicability to interpret in situ stress levels from the tensile fracture stresses and the corresponding borehole wall temperatures. Coupled thermo-mechanical numerical simulations are also conducted using FLAC3D, with thermal option, to check the validity of the proposed techniques. From the preliminary theoretical and numerical analysis, the method suggested for the measurement of in situ stresses appears to be capable of accurate estimation of the virgin stresses by monitoring tensile crack formation at a borehole wall and recording the wall temperatures at the time of crack initiation.

Study on Installed Performance Simulation of Aircraft Gas-Turbine Engine Considering Inlet and Exhaust Losses (흡배기구 손실예측 및 이를 고려한 항공기 가스터빈의 장착 성능모사 연구)

  • Kong, Chang-Duk;Owino, George.Omollo.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.100-108
    • /
    • 2006
  • Experimental study has been a general way to evaluate inlet and exhaust duct performances, but this is not only costly but also time consuming. Computational simulation is hence replacing experimental study and consequently time and cost saving. This paper therefore aims to investigate typical component performance of the intake and exhaust ducts using 3D representation. In this study a specific inlet and exhaust was modeled and analyzed to estimate its losses and flow field using computational fluid dynamic program with flow visualization capabilities. A process that requires geometry data to be modeled. That allowed for possibility of design trade off in designing phase. Installed performance of a specific turbo shaft engine was finally evaluated with the estimated inlet, exhaust and other accessories losses.