• Title/Summary/Keyword: 3D Finite element analysis

Search Result 1,969, Processing Time 0.032 seconds

Numerical Analysis of Moving Type and Static Type Electrodynamic Suspension Simulator with Superconducting Levitation Magnet (초전도 부상자석을 이용한 동적 및 정지형 반발식 자기부상 시험기의 수치해석)

  • Lee, E.R.;Bae, D.K.;Chung, Y.D.;Yoon, Y.S.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator and static type EDS simulator using high-Tc superconducting (HTS) levitation magnet. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible two ways to simulate the EDS system were simulated in this paper by using finite element method (FEM). The first way was the moving type simulator which consists of the fixed HTS magnet and the moving ground conductor. The second way was the static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

Effect of thread design on the marginal bone stresses around dental implant (임플란트 나사산 디자인이 변연골 응력에 미치는 영향)

  • Lee, Sang-Hyun;Jo, Kwang-Heon;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.316-323
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the effect of different thread designs on the marginal bone stresses around dental implant. Materials and methods: Standard ITI implant(ITI Dental Implant System; Straumann AG, Waldenburg, Switzerland), 4.1 mm in diameter and 10 mm in length, was selected as control. Test implants of four different thread patterns were created based on control implant, i.e. maintaining all geometrical design of control implant except thread pattern. Four thread designs used in test implants include (1) small V-shape screw (model A), (2) large V-shape screw (model B), (3) buttress screw (model C), and (4) trapezoid screw (model D). Surface area for unit length of implant was 14.4 $mm^2$ (control), 21.7 (small V-shape screw), 20.6 (large V-shape screw), 17.0 (buttress screw) and 28.7 $mm^2$ (trapezoid screw). Finite element models of implant/bone complex were created using an axisymmetric scheme with the use of NISA II/DISPLAY III (Engineering Mechanics Research Corporation, Troy, MI, USA). A load of 100 N applied to the central node on the crown top either in parallel direction or at 30 degree to the implant axis (in order to apply non-axial load to the implant NKTP type 34 element was employed). Quantification and comparison of the peak stress in the marginal bone of each implant model was made using a series of regression analyses based on the stress data calculated at the 5 reference points which were set at 0.2, 0.4, 0.6, 0.8 and 1.0 mm from implant wall on the marginal bone surface. Results: Results showed that although severe stress concentration on the marginal bone cannot be avoided a substantial reduction in the peak stress is achievable using different thread design. The peak marginal bone stresses under vertical loading condition were 7.84, 6.45, 5.96, 6.85, 5.39 MPa for control and model A, B, C and D, respectively. And 29.18, 26.45, 25.12, 27.37, 23.58 MPa when subject to inclined loading. Conclusion: It was concluded that the thread design is an important influential factor to the marginal bone stresses.

Development and Analysis of Unbonded Post-tensioned Anchorage for Single Tendon (비부착식 단일 강연선용 포스트텐션 정착구 개발 및 응력해석)

  • Lee, Young Hak;Cho, Yong Woo;Kim, Min Sook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • In this paper, an unbonded post-tensioning anchorage for a single-stranded wire that allows more efficient stress distribution in the post-tensioned anchorage zone was developed by using a finite element analysis using a commercial program. The stress analysis was carried out using a 3D model in the anchorage zone of the concrete member using the developed anchorage. The result of analysis ensured that the developed anchorage reduced the maximum bursting stress in anchorage zone compared to the case of existing anchorage and the location where maximum bursting stress also occurred closer to the anchorage. Bursting force was calculated using AASHTO, modified $M{\ddot{o}}rsch$ and Stone. As a result, it was concluded that an effective reinforcement design of the anchorage zone can be designed by modified $M{\ddot{o}}rsch$.

Nonlinear analysis of reinforced concrete beams strengthened with polymer composites

  • Pendhari, S.S.;Kant, T.;Desai, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 2006
  • Strengthening of existing old structures has traditionally been accomplished by using conventional materials and techniques, viz., externally bonded steel plates, steel or concrete jackets, etc. Alternatively, fibre reinforced polymer composite (FRPC) products started being used to overcome problems associated with conventional materials in the mid 1950s because of their favourable engineering properties. Effectiveness of FRPC materials has been demonstrated through extensive experimental research throughout the world in the last two decades. However there is a need to use refined analytical tools to simulate response of strengthened system. In this paper, an attempt has been made to develop a numerical model of strengthened reinforced concrete (RC) beams with FRPC laminates. Material models for RC beams strengthened with FRPC laminates are described and verified through a nonlinear finite element (FE) commercial code, with the help of available experimental data. Three dimensional (3D) FE analysis has been performed by assuming perfect bonding between concrete and FRPC laminate. A parametric study has also been performed to examine effects of various parameters like fibre type, stirrup's spacing, etc. on the strengthening system. Through numerical simulation, it has been shown that it is possible to predict accurately the flexural response of RC beams strengthened with FRPC laminates by selecting an appropriate material constitutive model. Comparisons are made between the available experimental results in literature and FE analysis results obtained by the present investigators using load-deflection and load-strain plots as well as ultimate load of the strengthened beams. Furthermore, evaluation of crack patterns from FE analysis and experimental failure modes are discussed at the end.

Analysis of Eddy Current and Hysteresis Loss Distribution from Fixing Structure of 154 kV Underground Transmission Cable (154 kV 지중송전선로의 고정용 금구류에서 발생하는 와전류 및 히스테리시스 손실 분포 해석)

  • Song, Hyeeun;Im, Sanghyeon;Kim, Kyoung Youn;Park, Gwansoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2018
  • The use of underground transmission power lines is expanding for the beauty and convenience of the near city. However, there is a lack of research on the losses from underground transmission power lines, especially those that support three-phase cables operating 24 hours a day. Since the supporting the cable is made of a material having a conductivity and a magnetic permeability, an eddy current and a hysteresis loss are generated due to a magnetic field caused by a current flowing in the cable. Losses occurring in this case adversely affect the power energy transfer efficiency, so research on loss is necessary. Therefore, in this paper, we analyzed the eddy currents and hysteresis losses that occur in a supporting a cable through three - dimensional finite element analysis.

Quantitative Analysis of 3-D Displacements Measurement by Using Holospeckle Interferometry (홀로스펙클 간섭법을 이용한 3차원 변위측정의 정량적 연구)

  • 주진원;권영하;박승옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1208-1217
    • /
    • 1993
  • The simple and effective optical technique synthesizing holographic interferometry and speckle photography is presented. The optical system used in this experiment is based on image holography. A cantilever beam located on the precision translator is used to evaluate this measurement system. Experimental results agree well with the actual displacements within the error of 2.8%. As an its application, three dimensional contact deformation in the ball indentation is measured by using this optical system and compared with the numerical analysis by finite element method.

Retrofitting of vulnerable RC structures by base isolation technique

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Ahmmad, Rasel;Darain, Kh. Mahfuz ud
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.603-623
    • /
    • 2015
  • The scale and nature of the recent earthquakes in the world and the related earthquake disaster index coerce the concerned community to become anxious about it. Therefore, it is crucial that seismic lateral load effect will be appropriately considered in structural design. Application of seismic isolation system stands as a consistent alternative against this hazard. The objective of the study is to evaluate the structural and economic feasibility of reinforced concrete (RC) buildings with base isolation located in medium risk seismic region. Linear and nonlinear dynamic analyses as well as linear static analysis under site-specific bi-directional seismic excitation have been carried out for both fixed based (FB) and base isolated (BI) buildings in the present study. The superstructure and base of buildings are modeled in a 3D finite element model by consistent mass approach having six degrees of freedom at each node. The floor slabs are simulated as rigid diaphragms. Lead rubber bearing (LRB) and High damping rubber bearing (HDRB) are used as isolation device. Change of structural behaviors and savings in construction costing are evaluated. The study shows that for low to medium rise buildings, isolators can reduce muscular amount of base shears, base moments and floor accelerations for building at soft to medium stiff soil. Allowable higher horizontal displacement induces structural flexibility. Though incorporating isolator increases the outlay, overall structural cost may be reduced. The application of base isolation system confirms a potential to be used as a viable solution in economic building design.

Isogeometric Analysis of Mindlin Plate Structures Using Commercial CAD Codes (상용 CAD와 연계한 후판 구조의 아이소-지오메트릭 해석)

  • Lee, Seung-Wook;Koo, Bon-Yong;Yoon, Min-Ho;Lee, Jae-Ok;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.329-335
    • /
    • 2011
  • The finite element method (FEM) has been used for various fields like mathematics and engineering. However, the FEM has a difficulty in describing the geometric shape exactly due to its property of piecewise linear discretization. Recently, however, a so-called isogeometric analysis method that uses the non-uniform rational B-spline(NURBS) basis function has been developed. The NURBS can be used to describe the geometry exactly and play a role of basis functions for the response analysis. Nevertheless, constructing the NURBS basis functions in analysis is as costly as a meshing process in the FEM. Since the isogeometric method shares geometric data with CAD, it is possible to intactly import the model data from commercial CAD tools. In this paper, we use the Rhinoceros 3D software to create CAD models and export in the form of STEP file. The information of knot vectors and control points in the NURBS is utilized in the isogeometric analysis. Through some numerical examples, the accuracy of isogeometric method is compared with that of FEM. Also, the efficiency of the isogeometric method that includes the CAD and CAE in a unified framework is verified.

Stability Analysis of the Excavation Slope on Soft Ground using Sheet Pile (널말뚝을 이용한 연약지반 굴착사면의 안정해석)

  • Kang, Yea Mook;Cho, Seong Seop;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 1996
  • The following results were obtained by analyzing the displacement, strain and stability of ground at the soft ground excavation using sheet pile. 1. Before setting the strut, the horizontal displacement was large on the upper part of excavated side, but after setting the strut, it showed concentrated phenomenon while being moved to go down to the excavated side. 2. After setting the strut, the displacement of sheet pile was rapidly decreased about a half compared with before setting the strut. The limitation of excavation depth was shown approximately GL-8m after setting double stair strut. 3. Maximum shear strain was gradually increased with depth of excavation, and local failure possibility due to shear deformation at the bottom of excavation was decreased by reinforcement of strut. 4. Maximum horizontal displacement of sheet pile at GL-7.5m was shown 0.2% of excavation depth in elasto-plastic method, and 0.6% in finite-element methods, and the maximum displacement was occurred around the bottom of excavation. 5. To secure the safety factor about penetration depth in the ground of modeling, D/H should be more than 0.89 in the case of one stair strut, and more than 0.77 in the case of double stair strut. 6. The relation of safety factor and D/H about the penetration depth was appeared, Fs=0.736(D/H) + 0.54 in the case of one stair strut, and Fs=0.750(D/H) + 0.62 in the case of double stair strut.

  • PDF

FE-Analysis on void closure behavior during hot open die forging process (열간 자유단조 공정시 내부 기공 압착 거동에 관한 해석)

  • Kwon, Y.C.;Lee, J.H.;Lee, S.W.;Jung, Y.S.;Kim, N.S.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.160-164
    • /
    • 2007
  • In the steel industry, there is a need to produce large forged parts for the automobile industries, the flight and shipping industries ad military industries. In the steel-industry application, a cogging technique for cast ingots is required, because the major parts are needed as one large body in order to obtain higher quality. Therefore, cogging process is the primary step in manufacturing of practically large open-die forging. In the cogging process, internal voids have to be eliminated as defects, The present work is concerned with the elimination of the internal voids in large ingots so as obtain sound products. In this study, hot compression tests were carried out to obtain the flow stress of cast microstructure at different temperature and strain rates. The FEM analysis are performed to investigate the overlap defect of cast ingots during cogging stage. The measure flow stress data were used to simulate the cogging process of cast ingot using the practical material properties. Also the analysis of void closure are performed by using the $DEFORM^{TM}$-3D. The calculated results of void closure behavior are compared with the measured results before and after cogging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the void closure can be investigated by the comparison of practical experiment and numerical analysis.

  • PDF