• Title/Summary/Keyword: 3D Finite element analysis

Search Result 1,984, Processing Time 0.033 seconds

Prediction of fracture in hub-hole expansion process using ductile fracture criteria (연성 파괴 기준을 이용한 허브 홀 확장 과정에서의 파단 예측)

  • Ko Y. K.;Lee J. S.;Huh H.;Kim H. K.;Park S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.160-163
    • /
    • 2004
  • The hub hole in a wheel of vehicles usually formed with hole expansion process. Formability of material, especially the hole expansion ratio, is important to produce a fine hub hole. The hub hole expansion process is different from general forming process or bore expansion process in the viewpoint of forming a thick plate. In the hole expansion process of the plate with a hole, as the hole being expanded, the crack is occurred to outward direction at the boundary of a hole. Therefore, it is need to apply the fracture criterion in the hub hole expansion process. In this paper, the hub hole expansion process is simulated with commercial elasto-plastic finite element code, LS-DYNA3D considering some ductile fracture criteria. Fracture mode and hole expansion ratio is compared with respect to the fracture criteria. Analysis results demonstrate that only the effective plastic strain is not adequate to predict the fracture mode in the hub hole. And the analysis results also indicate that the ductile fracture criteria properly predict the fracture mode but hole expansion ratio is different with the result of each other because of their different characteristics.

  • PDF

Vibration Analysis of Trapezoidal Corrugated Plates with Stiffeners and Lumped Masses (집중질량을 고려한 보강된 사다리꼴 주름판의 진동해석)

  • Jung, Kang;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.414-420
    • /
    • 2014
  • In this paper, the vibration characteristics of the trapezoidal corrugated plate with axial stiffeners and lumped masses are investigated by the analytical method. The corrugated plate can be treated as an equivalent orthotropic plate as this plate has different flexure properties in two perpendicular directions; flexible in the corrugation direction and stiff in the transverse direction. The effective extensional and flexural stiffness of the equivalent plate are considered to obtain the precise solution in the analysis. The plate is stiffened by concentric stiffeners horizontally to the corrugation direction. The discrete stiffener theory is adopted to consider the position of stiffener. To demonstrate the validity of the proposed approach, the comparison is made with the results of 3D ANSYS finite element solutions. Some numerical results are presented to check the effect of the geometric properties.

Design and Analysis of vehicle Hood using Magnesium Alloy Sheets (마그네슘 합금 판재를 이용한 차량용 후드의 설계 및 해석)

  • Shin H. W.;Yoo H. J.;Yeo D. H.;Shin K. Y.;Koh Y. S.;Choi S. W.;Lee S. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.220-226
    • /
    • 2005
  • To achieve the weight reduction of a vehicle, Magnesium alloys are widely used in automobile parts because of its lightweight characteristics. Magnesium alloys also have advantages in recycling, stiffness, NVH , heat protection. But Magnesium alloy parts are mainly manufactured by diecasting processes, their productivity was not so high compared to by sheet metal working. We are developing vehicle hood using magnesium sheets. In this study we designed magnesium alloy hood which have equivalent mechanical characteristics to steel hood. Using finite element method we decided thickness of magnesium sheets under some design requirements and we changed the shape of hood inner panel and hinge reinforcements. Outer and inner panel thickness was 1.3mm, 1.5mm respectively. Panel dentibility analysis was performed to conform the new magnesium design by nonlinear FEM package. Formability and hemming of Magnesium sheets are the subjects for further study because they have poor stretchability compared to steel sheets.

  • PDF

Analysis of the Magnetic Force and Torque of a Rotatory Two-phase Transverse Flux Machine (회전형 이상 횡자속형 전동기에서 발생하는 자기력 및 토크 해석)

  • Park, Nam-Ki;Chang, Jung-Hwan;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.33-40
    • /
    • 2007
  • Rotatory two-phase transverse flux machine(TFM) is a relatively new type of motor with high power density, high torque, and low speed in comparison to conventional electrical motors. However, it has some shortcomings,.i.e. complex construction and high possibility of the magnetically induced nitration due to its inherent structure. This Paper investigates the characteristics of the magnetic force and the torque in the rotatory two-phase TFM by using the 3-D finite element method and the spectral analysis. This research shows that the average torque decreases and that the torque ripple increases as the phase delay increases. It also shows that the unbalanced magnetic force is one of the dominant excitation forces in this machine. And it proposes a new topology of rotatory two-phase TFM to eliminate the unbalanced magnetic force.

Investigation of water length effects on the modal behavior of a prototype arch dam using operational and analytical modal analyses

  • Sevim, Baris;Bayraktar, Alemdar;Altunisik, Ahmet Can
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.593-615
    • /
    • 2011
  • This study determines the water length effects on the modal behavior of a prototype arch dam using Operational and Analytical Modal Analyses. Achievement of this purpose involves construction of a prototype arch dam-reservoir-foundation model under laboratory conditions. In the model, reservoir length was taken to be as much as three times the dam height. To determine the experimental dynamic characteristics of the arch dam using Operational Modal Analysis, ambient vibration tests were implemented for empty reservoir and three different reservoir water lengths. In the ambient vibration tests, the dam was vibrated by natural excitations provided from small impact effects and the response signals were measured using sensitive accelerometers. Operational Modal Analysis software process signals collected from the ambient vibration tests, and Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques estimated modal parameters of the dams. To validate the experimental results, 3D finite element model of the prototype arch dam was modeled by ANSYS software for empty reservoir and three different reservoir water lengths, and dynamic characteristics of each model were determined analytically. At the end of the study, experimentally and analytically identified dynamic characteristics compared to each other. Also, changes on the natural frequencies along to water length are plotted as graphs. Results suggest that reservoir water complicates the modal behavior of the arch dam significantly.

Measurement of Ion Energy Distribution using QMS & Ionization Enhancement by usign Magnetic Field in Triod BARE (자장을 이용한 이온화율 증대형 삼극형 BARE에서 이온화율의 증대경향과 QMS를 이용한 이온의 에너지 분포 측정)

  • 김익현;주정훈;한봉희
    • Journal of Surface Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.119-124
    • /
    • 1991
  • Recently, the trend of research in hard coating is concentrate on developing the process of ionization rate under low operating pressure, to get the thin film with high adhesion and dense microstructures. In this study ionization rate enhancement type PVD process using permanent magnet is developed, which enhances the ionization rate by confining the plasma suppressing the wall loss of electron. By the result to investigate the characteristic of glow discharge, the ionization rate of this process is enhanced about twice as high as that of triod BARE process (about 26%), and more dense TiN microstructures are obtained in this process. Cylindrical ion energy analyzer is made and attached in front of a quadrupole mass filter for the analysis of the energy distribution of reactive gas and activated gas ions from the plasma zone. To analyze the operation mechanism of ion energy analyzer, computer simulation is performed by calculation the electric field environment using finite element method. By these analyses of ion energy distribution of outcoming ions from the plasma zone, it is found that magnetic field enhances ion kinetic energy as well as ionization rate. The other results of this study is that the foundation of feed-back system is constructed, which automatically control the partial pressure of reactive gas. In can be possible by recording the data of mass spectrum and ion energy analysis using A-D converter.

  • PDF

On Relevant Ramberg-Osgood Fit to Engineering Non-Linear Fracture Mechanics Analysis (정확한 비선형 파괴역학 해석을 위한 Ramberg-Osgood 상수 결정법)

  • Huh, Nam-Su;Kim, Yun-Jae;Choi, Young-Hwan;Yang, Jun-Seok;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1571-1578
    • /
    • 2003
  • This paper proposes a robust method for the Ramberg-Osgood(R-O)fit to accurately estimate elastic-plastic J from engineering fracture mechanics analysis based on deformation plasticity. The proposal is based on engineering stress-strain data to determine the R-O parameters, instead of true stress-strain data. Moreover, for practical applications, the method is given not only for the case when full stress-strain data are available but also for the case when only yield and tensile strengths are available. Reliability of the proposed method for the R-O fit is validated against detailed 3-D Finite Element (FE) analyses for circumferential through-wall cracked pipes under global bending using five different materials, three stainless steels and two ferritic steels. Taking the FE J results based on incremental plasticity using actual stress-strain data as reference, the FE J results based on deformation plasticity using various R-O fits are compared with reference J values. Comparisons show that the proposed R-O fit provides more accurate J values for all cases, compared to existing methods for the R-O fit. Advantages of the proposed R-O fit in practical applications are discussed, together with its accuracy.

The reason of cracking in bottom gallery of SefidRud Buttress Dam and earthquake and post earthquake performance

  • Mirzabozorg, Hasan;Ghaemian, Mohsen;Roohezamin, Amirhossein
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.103-124
    • /
    • 2019
  • Present study concerns the safety evaluation of SefidRud dam's block No. 18 regarding probable crack propagation in the foundation gallery under a MCE record. Accordingly, a 3D finite element model of the block in companion with the reservoir and the foundation is modeled. All the associated thermal and structural parameters are derived via calibration with the records of thermometers and pendulums installed inside the dam body. The origination of the cracks and their whereabouts are determined by primary thermal and static analyses and through a linear dynamic analysis the potential failure zone and their extent and level are studied. The foundation gallery is the most probable zone among the other intensive tensile stress area to compromise the dam stability. Therefore, the nonlinear analysis of this risky region is inevitable. The results depict the permissible expansion of the cracks inside the gallery even under another future earthquake in MCE level. As a consequence, the general dam performance is assessed safe in spite of the seepage flow rate growth from the gallery fractures.

Seismic Fragility of Steel Piping System Based on Pipe Size, Coupling Type, and Wall Thickness

  • Ju, Bu Seog;Gupta, Abhinav;Ryu, Yonghee
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1200-1209
    • /
    • 2018
  • In this study, a probabilistic framework of the damage assessment of pipelines subjected to extreme hazard scenario was developed to mitigate the risk and enhance design reliability. Nonlinear 3D finite element models of T-joint systems were developed based on experimental tests with respect to leakage detection of black iron piping systems, and a damage assessment analysis of the vulnerability of their components according to nominal pipe size, coupling type, and wall thickness under seismic wave propagations was performed. The analysis results showed the 2-inch schedule 40 threaded T-joint system to be more fragile than the others with respect to the nominal pipe sizes. As for the coupling types, the data indicated that the probability of failure of the threaded T-joint coupling was significantly higher than that of the grooved type. Finally, the seismic capacity of the schedule 40 wall thickness was weaker than that of schedule 10 in the 4-inch grooved coupling, due to the difference in the prohibition of energy dissipation. Therefore, this assessment can contribute to the damage detection and financial losses due to failure of the joint piping system in a liquid pipeline, prior to the decision-making.

Experimental and numerical analysis of the punching behavior of RC isolated footings

  • Walid, Mansour;Sabry, Fayed;Ali, Basha
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.665-682
    • /
    • 2022
  • In the current study, punching behavior of Reinforced concrete (RC) isolated footings was experimentally and numerically investigated. The experimental program consisted of four half-scale RC isolated footing specimens. The test matrix was proposed to show effect of footing area, reinforcement mesh ratio, adding internal longitudinal reinforcement bars and stirrups on the punching response of RC isolated footings. Footings area varied from 1200×1200 mm2 to 1500×1500 mm2 while the mesh reinforcement ratio was in the range from 0.36 to 0.45%. On the other hand, a 3D non-linear finite element model was constructed using ABAQUS/standard program and verified against the experimental program. The numerical results agreed well with the experimental records. The validated numerical model was used to study effect of concrete compressive strength; longitudinal reinforcement bars ratio and stirrups concentration along one or two directions on the ultimate load, deflection, stiffness and failure patterns of RC isolated footings. Results concluded that adding longitudinal reinforcement bars did not significantly affect the punching response of RC isolated footings even high steel ratios were used. On the contrary, as the stirrups ratio increased, the ultimate load of RC isolated footings increased. Footing with stirrups ratio of 1.5% had ultimate load equal to 1331 kN, 19.6% higher than the bare footing. Moreover, adding stirrups along two directions with lower ratio (0.5 and 0.7%) significantly enhanced the ultimate load of RC isolated footings compared to their counterparts with higher stirrups ratio (1.0 and 1.5%).