• Title/Summary/Keyword: 3D Finite element analysis

Search Result 1,974, Processing Time 0.029 seconds

Dynamic Finite Element Modeling and Structural Vibration Analysis of a Gyrocopter (자이로콥터의 동적 유한요소모델링 및 구조진동해석)

  • Jung, Se-Un;Yang, Yong-Jun;Kim, Hyun-Jung;Je, Sang-Eon;Cho, Tae-Hwan;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.813-820
    • /
    • 2005
  • In this study, finite element modeling and structural vibration analyses of a gyrocopter have been conducted considering dynamic hub-loads due to rotating blades. For this research, 3D CATIA models for most mechanical parts are exactly prepared and assembled into the final aircraft configuration. Then the dynamic finite element model including several non-structural parts are constructed based on the exact 3D CAD data. Computational structural dynamics technique based on finite element method is applied using both MSC/NASTRAN and developed in-house code which can largely reduce the pre and postprocessing time of general transient dynamic analyses. Modal based transient and frequency response analyses are used to efficiently investigate vibration characteristics. The results include natural frequency comparison for different fuel and pilot conditions, fundamental natural mode shapes, frequency responses and transient acceleration responses of the present gyrocopter model.

  • PDF

3-Dimensional Finite Element Method Analysis of Blanking Die for Lead Frame (리드프레임의 전단용 금형에 대한 3차원 FEM 해석)

  • Choi, Man-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.61-65
    • /
    • 2011
  • The capabilities of finite elements codes allow now accurate simulations of blanking processes when appropriate materials modelling are used. Over the last decade, numerous numerical studies have focused on the influence of process parameters such as punch-die clearance, tools geometry and friction on blanking force and blank profile. In this study, three dimensional finite element analysis is carried out to design a lead frame blanking die using LS-Dyna3D package. After design of the blanking die, an experiment is also carried out to investigate the characteristics of blanking for nickel alloy Alloy42, a kind of IC lead frame material. In this paper, it has been researched the investigation to examine the influence of process parameters such as clearance and air cylinder pressure on the accuracy of sheared plane. Through the experiment results, it is shown that the quality of sheared plane is less affected by clearance and air cylinder pressure.

The Effects of Die Design and Die Series on the Surface Residual Stress of Cold Drawn Eutectoid Steel Wire (고탄소강 와이어의 냉간 인발시 다이 디자인과 다이 시리즈가 표면 잔류 응력에 미치는 영향)

  • Bae S. G.;Yang Y. S.;Ban D. Y.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.418-422
    • /
    • 2005
  • In this study, the die design and die series on the surface residual stress of cold drawn eutectoid steel wire has been investigated. Test pieces were fabricated using die series with different mean and final reduction ratio. Surface residual stresses in the axial direction were measured by X-ray diffraction, Broker's 2-dimensional GADDS system. Results were compared with stress profiles which were calculated by 3D and 2D finite element simulation, Hibbitt's ABAQUS 6.4 program in Finite Element Analysis. By means of FEA method, optimal die shape considering delta-parameter were induced and applied in order to determine die sequence designs. Balance of the drawing stresses was also introduced to optimize die sequence.

  • PDF

The Effects of Die Design and Die Series on the Surface Residual Stress of Cold Drawn Eutectoid Steel Wire (고탄소강 와이어의 냉간 인발 시 다이 디자인과 다이 시리즈가 표면 잔류 응력에 미치는 영향)

  • Bae, J.G.;Yang, Y.S.;Ban, D.Y.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.153-157
    • /
    • 2006
  • In this study, the die design and die series on the surface residual stress of cold drawn eutectoid steel wire have been investigated. Test pieces were fabricated using die series with different mean and final reduction ratios. Surface residual stresses in the axial direction were measured by X-ray diffraction, Bruker's 2-dimensional GADDS system. The results were compared with stress profiles that were calculated by 3D and 2D finite element simulations, ABAQUS 6.4 program in finite element analysis(FEA). By means of the FEA method, optimal die shape considering delta-parameter were induced and applied in order to determine die sequence designs. Balance of the drawing stresses was also introduced to optimize die sequence.

Finite Element Model for Wear Analysis of Conventional Friction Stir Welding Tool

  • Hyeonggeun Jo;Ilkwang Jang;Yeong Gil Jo;Dae Ha Kim;Yong Hoon Jang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.118-122
    • /
    • 2023
  • In our study, we develop a finite element model based on Archard's wear law to predict the cumulative wear and the evolution of the tool profile in friction stir welding (FSW) applications. Our model considers the rotational and translational behaviors of the tool, providing a comprehensive description of the wear process. We validate the accuracy of our model by comparing it against experimental results, examining both the predicted cumulative wear and the resulting changes to the tool profile caused by wear. We perform a detailed comparison between the predictions of the model and experimental data by manipulating non-dimensional coefficients comprising model parameters, such as element sizes and time increments. This comparison facilitates the identification of a specific non-dimensional coefficient condition that best replicates the experimentally observed cumulative wear. We also directly compare the worn tool profiles predicted by the model using this specific non-dimensional coefficient condition with the profiles obtained from wear experiments. Through this process, we identify the model settings that yield a tool wear profile closely aligning with the experimental results. Our research demonstrates that carefully selecting non-dimensional coefficients can significantly enhance the predictive accuracy of finite element models for tool wear in FSW processes. The results from our study hold potential implications for enhancing tool longevity and welding quality in industrial applications.

Natural frequency error estimation for 3D brick elements

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.137-148
    • /
    • 1997
  • In computing eigenvalues for a large finite element system it has been observed that the eigenvalue extractors produce eigenvectors that are in some sense more accurate than their corresponding eigenvalues. From this observation the paper uses a patch type technique based on the eigenvector for one mesh quality to provide an eigenvalue error indicator. Tests show this indicator to be both accurate and reliable. This technique was first observed by Stephen and Steven for an error estimation for buckling and natural frequency of beams and two dimensional in-plane and out-of-plane structures. This paper produces and error indicator for the more difficult problem of three dimensional brick elements.

A General Description of Tool Surface Based on Finite Element Mesh and Its Application to 3-D Sheet Forming Processes (유한요소격자에 기초한 일반적인 금형면 묘사와 3차원 박판성형공정에의 응용)

  • Yun, Jeong-Hwan;Kim, Jong-Bong;Yang, Dong-Yeol;Kim, Seok-Gwan;Yu, Dong-Jin;Lee, Jae-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.550-559
    • /
    • 2000
  • One of the most important factor to be considered for the analysis of sheet metal forming processes is the tool surface description for arbitrarily- shaped sheet metal parts. In the present study , finite element approach is used to describe the arbitrarily shaped tool surface. In finite element mesh approach, tool surfaces ar, described by finite elements. The finite elements mesh description of the tool surface, which is originally described by CAD data, needs much time and time-consuming graphic operation. The method, however, has been widely used to describe a complex tool surface. In the present study, the contact searching algorithm for the finite element mesh approach is developed based on cell strategy method and sheet surface normal scheme. For the verification purpose, a clover cup drawing, Baden-Baden oilpan problem and a trunk floor drawing were investigated. The computational results based on the finite element approach were compared with the results of available parametric patch approach and experiments.

The 3D Surface Crack-Front Constraints in Welded Joins (용접부 3차원 표면균열선단에서의 구속상태)

  • Lee, Hyeong-Il;Seo, Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.144-155
    • /
    • 2000
  • 초록 The validity, of a single parameter such as stress intensity, factor K or J-integral in traditional fracture mechanics depends strongly on the geometry, and loading condition. Therefore the second parameter like T-stress measuring the stress constraint is additionally needed to characterize the general crack-tip fields. While many, research works have been done to verify, the J-T description of elastic-plastic crack-tip stress fields in plane strain specimens, limited works (especially. for bimaterials) have been performed to describe the structural surface crack-front stress fields with the two parameters. On this background, via detailed three dimensional finite element analyses for surface-cracked plates and straight pipes of homogeneous materials and bimaterials under various loadings, we investigate the extended validity or limitation of the two parameter approach. We here first develop a full 3D mesh generating program for semi-elliptical surface cracks, and calculate elastic T-stress from the obtained finite element stress field. Comparing the J-T predictions to the elastic-plastic stresses from 3D finite element analyses. we then confirm the extended validity of fracture mechanics methodology based on the J-T two parameters in characterizing the surface crack-front fields of welded plates and pipes under various loadings.

Flux Linkage Calculation for 3-D Finite Element Analysis

  • Im, Chang-Hwan;Jung, Hyun-Kyo;Kim, Hong-Kyu
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.13-18
    • /
    • 2002
  • Novel method to calculate flux linkage for 3-D finite element analysis is proposed. It does not require any integral path if the current direction in a coil is known. The flux linkage can be calculated very easily using simple volume based integration. The current direction is calculated based on the recently developed technique by the authors. The novel method for flux linkage calculation is verified by applying to a very complicated deflection yoke coil. The simulation result is compared to the experimental one. From the simulation, it is shown that the proposed method is very accurate and effective to calculate the flux linkage of a coil.

Design and Characteristic Analysis of an 200[kW], 30000[rpm] Induction Motor for Gearless Turbo Machine (Gearless 터보기기용 200[kW], 30000[rpm] 유도전동기 설계 및 특성 해석)

  • Jo, Won-Young;Woo, Kyung-Il;Cho, Yun-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.420-427
    • /
    • 2006
  • This paper describes design and characteristic analysis of the 200[kW], 3000[rpm] induction motor for gearless turbo machine. It was designed by the loading distribution method and the results of characteristics obtained by the equivalent circuit method are compared with the results of circle diagram. To verify the validation of design 2D finite element method is used and also 3D finite element method is used to calculate the current density curve of the rotor bars when they are broken.