• 제목/요약/키워드: 3D Finite Element Analysis (FEA)

검색결과 173건 처리시간 0.02초

임플란트 지대주나사의 조임회전력이 연결부 안정성에 미치는 영향에 관한 3차원 유한요소해석 연구 (Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis)

  • 엄태관;서승우;전계록;신정욱;정창모
    • 대한치과보철학회지
    • /
    • 제47권2호
    • /
    • pp.125-135
    • /
    • 2009
  • 연구목적: 임플란트 치료에서 흔히 발생하는 기계적인 문제점을 하나가 지대주나사의 풀림과 파절이다. 일반적으로 나사 연결의 안정성을 위해서는 지대주나사의 조임회전력에 의한 전하중을 나사의 탄성한계까지 증가시킬 필요가 있다. 그러나 저작운동에 의한 기능부하는 전하중이 가해진 지대주나사에 추가적인 인장력을 가하게 되어 나사의 풀림이나 파절의 가능성을 높인다. 이러한 풀림이나 파절을 방지하면서 동시에 최대의 결합 강도를 가지는 조임회전력을 찾는 연구가 필요하다. 본 연구는 지대주나사의 조임회전력이 임플란트-지대주 연결부 안정성에 미치는 영향을 3차원 유한요소 분석을 통하여 확인하고자했다. 연구 재료 및 방법: External butt joint를 가진 임플란트를 기반으로 3차원 유한요소 해석모형을 설계하였다. 조임회전력에 따른 지대주나사의 전하중을 이론치, 실험치 및 해석치를 비교하여 해석모형을 검증하였다. 검증한 해석모형에서 대해 조임회전력을 10 Ncm, 20 Ncm, 30 Ncm, 그리고 40 Ncm로 각각 적용하고 지대주에 30도 경사지게 250 N의 외부하중을 가하여 유산요소 해석을 실시하였다. 그 결과를 통해 지대주나사의 최대 등가응력을 계산하고 고정체와 지대주 연결부의 응력분포 및 이개거리(gap distance)를 산출하였다. 결과 및 결론: 본 연구조건 하에서 다음과 같은 결과를 얻었다. 1. 전하중은 조임회전력이 클수록 증가하였다. 2. 조임회전력 적용 후 최대 등가응력은 지대주나사 경부에서 발생하였으며, 나사산 체결부에서는 주로 경부쪽 네 개의 나사산에 응력이 집중되었다. 3. 외부하중을 가했을 때에도 조임회전력을 적용했을 때와 동일하게 최대 등가응력은 주로 지대주나사 경부에서 발생하였으나, 10 Ncm의 조임회전력을 적용한 경우에서는 지대주나사 두부밑면에서 발생하였다. 4. 외부하중을 가했을 때 10 Ncm와 20 Ncm의 조임회전력을 적용한 경우에서는 연결부 이개(joint opening) 현상이 관찰 되었다. 5. 조임회전력이 40 Ncm인 경우에는 경사하중에 의해 지대주나사의 경부에 발생하는 최대등가응력이 나사의 소재인 티타늄 합금의 허용응력을 초과하였다. 이상의 결과로 볼 때, 조임회전력은 고정체와 지대주 연결부의 안정성에 영향을 미치는 것이 확인되었다. 임플란트 지대주나사는 임상에서 발생하는 기능 하중을 고려하여 고정체와 지대주 연결의 안정성을 유지할 수 있는 적정 조임회전력의 크기가 제안되어야 한다.

MIRIS 우주관측카메라의 기계부 개발 (DEVELOPMENT OF THE MECHANICAL STRUCTURE OF THE MIRIS SOC)

  • 문봉곤;정웅섭;차상목;이창희;박성준;이대희;육인수;박영식;박장현;남욱원;;;양순철;이선희;이승우;한원용
    • 천문학논총
    • /
    • 제24권1호
    • /
    • pp.53-64
    • /
    • 2009
  • MIRIS is the main payload of the STSAT-3 (Science and Technology Satellite 3) and the first infrared space telescope for astronomical observation in Korea. MIRIS space observation camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}\times3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200 K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI (Multi Layer Insulation) of 30 layers, and GFRP (Glass Fiber Reinforced Plastic) pipe support in the system. Optomechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

주변 골흡수 양상에 따른 임플란트와 골의 응력분산에 관한 유한요소 분석 (Influence of bone loss pattern on stress distribution in bone and implant: 3D-FEA study)

  • 이종혁;김성훈;이재봉;한중석;양재호
    • 대한치과보철학회지
    • /
    • 제48권2호
    • /
    • pp.111-121
    • /
    • 2010
  • 연구목적: 본 연구에서는 임플란트 주변 골흡수 양상의 차이가 임플란트와 주변골의 응력 분산에 미치는 영향을 알아보기 위해 수평 골흡수와 임플란트 주변 수직 골흡수에 있어서 주변골의 응력분산, 생물학적 폭경의 형성과 응력분산의 변화 관계 및 병적인 골흡수시의 주변골 응력분포를 유한요소 분석법을 사용하여 비교하고자 하였다. 연구 재료 및 방법:우측 제1 소구치 전방에서 제2 대구치 후방까지의 하악골 모형에서 자연치를 제거하고 직경 4.0 mm, 길이 10.0 mm의 나사형 임플란트를 제1 대구치 부위에 식립하였다. 수평 수직 골흡수의 차이를 보기 위하여 골흡수가 나타나지 않은 형태를 대조군 (I)으로 하여, 1.5 mm 수평 골흡수 (H1.5), 3.0 mm 수평 골흡수 (H3.0) 모형과 이에 상응하는 수직 골흡수 모형 (VW1.5; 1.5 mm, VW3.0; 3.0 mm)을 설계하였고, 생물학적 폭경의 형성과 응력 변화를 관찰하기 위해 생물학적 폭경이 형성되는 과정을 가정한 모형(B0; 피질골에서 임플란트와의 골유착이 없이 밀접하게 접촉된 상태, B1; 피질골에 0.5 mm 폭의 수직 골흡수가 발생한 상태)과 생물학적 폭경이 형성된 상태 (B2)의 모형을 설계하였으며, 생물학적 폭경이 형성된 상태는 0.5 mm 폭을 가지며 임플란트 장축에 경사진 형태를 가지고 있는 1.5 mm 깊이의 수직 골흡수 상태로 형성하였다. 병적 골흡수 상태는 수직 골흡수를 가정한 기존 모형 (VW1.5, VW3.0)과 골흡수가 더 진행된 VW4.5, 기저부에 피질골화가 이루어지지 못한 VO3.0, VO4.5, VO6.0모형을 추가하였다. 하중조건은 수직, 수평하중 그리고 협측 $45^{\circ}$경사하중을 각각 100 N씩 임플란트 보철물 부위에 가하였다. 결과: 분석결과 수평 골흡수와 수직 골흡수에 있어서 전반적인 응력의 크기와 임플란트에 가해지는 응력의 크기는 서로 대응하는 모형에서 유사하였으며, 수직 골흡수에 서 수직력을 받을 때 C2에서 C4로 1.5 mm의 골흡수가 증가하였으나 골에서 발생한 최대응력은 오히려 감소하였다. 수직 골흡수에서 응력이 결손부의 수직 벽을 통해 상부로 분산되는 것을 볼 수 있었다. 생물학적 폭경 형성 단계에서 응력이 가해지는 경우 피질골에서의 결합이 없는 A2에서 피질골 전반에 높은 응력이 발생하였으며 생물학적 폭경의 완성을 가정한 B1에서는 임플란트와 피질골의 경계에서 발생한 응력이 경사진 피질골을 따라서 퍼져나가고 있음을 보였다. 병적 골흡수에서 골결손부 하방에 피질골이 없는 경우는 골흡수에 비례하여 응력이 증가 하였으나 피질골이 있는 경우에는 응력의 증가가 골흡수량의 증가와 비례하지 않음을 보였다. 결론: 임플란트 주변 골흡수의 양이 같아도 흡수된 형태에 따라 발생하는 응력의 크기와 응력분산이 다르게 나타났으며 초기 골흡수 현상은 피질골과의 결합이 약할 때 이 부위에 응력이 증가되어 나타나며, 이후 응력이 감소되어 평형을 이루는 것으로 보인다. 수직 골흡수가 증가할 경우 피질골의 존재 유무가 응력 분산에 큰 영향을 미치며 피질골이 있는 경우 일정 범위에서 응력의 감소가 나타나 응력분산에 유리한 형태에서 골흡수의 진행을 감소시킬 수 있을 것으로 보인다.