• Title/Summary/Keyword: 3D Feature Vector

Search Result 98, Processing Time 0.03 seconds

A Study on Estimating Smartphone Camera Position (스마트폰 카메라의 이동 위치 추정 기술 연구)

  • Oh, Jongtaek;Yoon, Sojung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.99-104
    • /
    • 2021
  • The technology of estimating a movement trajectory using a monocular camera such as a smartphone and composing a surrounding 3D image is key not only in indoor positioning but also in the metaverse service. The most important thing in this technique is to estimate the coordinates of the moving camera center. In this paper, a new algorithm for geometrically estimating the moving distance is proposed. The coordinates of the 3D object point are obtained from the first and second photos, and the movement distance vector is obtained using the matching feature points of the first and third photos. Then, while moving the coordinates of the origin of the third camera, a position where the 3D object point and the feature point of the third picture coincide is obtained. Its possibility and accuracy were verified by applying it to actual continuous image data.

A study on the lip shape recognition algorithm using 3-D Model (3차원 모델을 이용한 입모양 인식 알고리즘에 관한 연구)

  • 배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.59-68
    • /
    • 1999
  • Recently, research and developmental direction of communication system is concurrent adopting voice data and face image in speaking to provide more higher recognition rate then in the case of only voice data. Therefore, we present a method of lipreading in speech image sequence by using the 3-D facial shape model. The method use a feature information of the face image such as the opening-level of lip, the movement of jaw, and the projection height of lip. At first, we adjust the 3-D face model to speeching face image sequence. Then, to get a feature information we compute variance quantity from adjusted 3-D shape model of image sequence and use the variance quality of the adjusted 3-D model as recognition parameters. We use the intensity inclination values which obtaining from the variance in 3-D feature points as the separation of recognition units from the sequential image. After then, we use discrete HMM algorithm at recognition process, depending on multiple observation sequence which considers the variance of 3-D feature point fully. As a result of recognition experiment with the 8 Korean vowels and 2 Korean consonants, we have about 80% of recognition rate for the plosives and vowels. We propose that usability with visual distinguishing factor that using feature vector because as a result of recognition experiment for recognition parameter with the 10 korean vowels, obtaining high recognition rate.

  • PDF

Study of Traffic Sign Auto-Recognition (교통 표지판 자동 인식에 관한 연구)

  • Kwon, Mann-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5446-5451
    • /
    • 2014
  • Because there are some mistakes by hand in processing electronic maps using a navigation terminal, this paper proposes an automatic offline recognition for traffic signs, which are considered ingredient navigation information. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which have been used widely in the field of 2D face recognition as computer vision and pattern recognition applications, was used to recognize traffic signs. First, using PCA, a high-dimensional 2D image data was projected to a low-dimensional feature vector. The LDA maximized the between scatter matrix and minimized the within scatter matrix using the low-dimensional feature vector obtained from PCA. The extracted traffic signs under a real-world road environment were recognized successfully with a 92.3% recognition rate using the 40 feature vectors created by the proposed algorithm.

Segmentation and Classification of Range Data Using Phase Information of Gabor Fiter (Gabor 필터의 위상 정보를 이용한 거리 영상의 분할 및 분류)

  • 현기호;이광호;황병곤;조석제;하영호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1275-1283
    • /
    • 1990
  • Perception of surfaces from range images plays a key role in 3-D object recognition. Recognition of 3-D objects from range images is performed by matching the perceived surface descriptions with stored object models. The first step of the 3-d object recognition from range images is image segmentation. In this paper, an approach for segmenting 3-D range images into symbolic surface descriptions using spatial Gabor filter is proposed. Since the phase of data has a lot of important information, the phase information with magnitude information can effectively segment the range imagery into regions satisfying a common homogeneity criterion. The phase and magnitude of Gabor filter can represent a unique featur vector at a point of range data. As a result, range images are trnasformed into feature vectors in 3-parameter representation. The methods not only to extract meaningful features but also to classify a patch information from range images is presented.

  • PDF

1D CNN and Machine Learning Methods for Fall Detection (1D CNN과 기계 학습을 사용한 낙상 검출)

  • Kim, Inkyung;Kim, Daehee;Noh, Song;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.85-90
    • /
    • 2021
  • In this paper, fall detection using individual wearable devices for older people is considered. To design a low-cost wearable device for reliable fall detection, we present a comprehensive analysis of two representative models. One is a machine learning model composed of a decision tree, random forest, and Support Vector Machine(SVM). The other is a deep learning model relying on a one-dimensional(1D) Convolutional Neural Network(CNN). By considering data segmentation, preprocessing, and feature extraction methods applied to the input data, we also evaluate the considered models' validity. Simulation results verify the efficacy of the deep learning model showing improved overall performance.

Stereo Vision-based Visual Odometry Using Robust Visual Feature in Dynamic Environment (동적 환경에서 강인한 영상특징을 이용한 스테레오 비전 기반의 비주얼 오도메트리)

  • Jung, Sang-Jun;Song, Jae-Bok;Kang, Sin-Cheon
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.263-269
    • /
    • 2008
  • Visual odometry is a popular approach to estimating robot motion using a monocular or stereo camera. This paper proposes a novel visual odometry scheme using a stereo camera for robust estimation of a 6 DOF motion in the dynamic environment. The false results of feature matching and the uncertainty of depth information provided by the camera can generate the outliers which deteriorate the estimation. The outliers are removed by analyzing the magnitude histogram of the motion vector of the corresponding features and the RANSAC algorithm. The features extracted from a dynamic object such as a human also makes the motion estimation inaccurate. To eliminate the effect of a dynamic object, several candidates of dynamic objects are generated by clustering the 3D position of features and each candidate is checked based on the standard deviation of features on whether it is a real dynamic object or not. The accuracy and practicality of the proposed scheme are verified by several experiments and comparisons with both IMU and wheel-based odometry. It is shown that the proposed scheme works well when wheel slip occurs or dynamic objects exist.

  • PDF

Managing and Modeling Strategy of Geo-features in Web-based 3D GIS

  • Kim, Kyong-Ho;Choe, Seung-Keol;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.75-79
    • /
    • 1999
  • Geo-features play a key role in object-oriented or feature-based geo-processing system. So the strategy for how-to-model and how-to-manage the geo-features builds the main architecture of the entire system and also supports the efficiency and functionality of the system. Unlike the conventional 2D geo-processing system, geo-features in 3B GIS have lots to be considered to model regarding the efficient manipulation and analysis and visualization. When the system is running on the Web, it should also be considered that how to leverage the level of detail and the level of automation of modeling in addition to the support for client side data interoperability. We built a set of 3D geo-features, and each geo-feature contains a set of aspatial data and 3D geo-primitives. The 3D geo-primitives contain the fundamental modeling data such as the height of building and the burial depth of gas pipeline. We separated the additional modeling data on the geometry and appearance of the model from the fundamental modeling data to make the table in database more concise and to allow the users more freedom to represent the geo-object. To get the users to build and exchange their own data, we devised a file format called VGFF 2.0 which stands for Virtual GIS File Format. It is to describe the three dimensional geo-information in XML(eXtensible Markup Language). The DTD(Document Type Definition) of VGFF 2.0 is parsed using the DOM(Document Object Model). We also developed the authoring tools for. users can make their own 3D geo-features and model and save the data to VGFF 2.0 format. We are now expecting the VGFF 2.0 evolve to the 3D version of SVG(Scalable Vector Graphics) especially for 3D GIS on the Web.

  • PDF

Managing Scheme for 3-dimensional Geo-features using XML

  • Kim, Kyong-Ho;Choe, Seung-Keol;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.47-51
    • /
    • 1999
  • Geo-features play a key role in object-oriented or feature-based geo-processing system. So the strategy for how-to-model and how-to-manage the geo-features builds the main architecture of the entire system and also supports the efficiency and functionality of the system. Unlike the conventional 2D geo-processing system, geo-features in 3D GIS have lots to be considered to model regarding the efficient manipulation and analysis and visualization. When the system is running on the Web, it should also be considered that how to leverage the level of detail and the level of automation of modeling in addition to the support for client side data interoperability. We built a set of 3D geo-features, and each geo-feature contains a set of aspatial data and 3D geo-primitives. The 3D geo-primitives contain the fundamental modeling data such as the height of building and the burial depth of gas pipeline. We separated the additional modeling data on the geometry and appearance of the model from the fundamental modeling data to make the table in database more concise and to allow the users more freedom to represent the geo-object. To get the users to build and exchange their own data, we devised a fie format called VGFF 2.0 which stands for Virtual GIS File Format. It is to describe the three dimensional geo-information in XML(extensible Markup Language). The DTD(Document Type Definition) of VGFF 2.0 is parsed using the DOM(Document Object Model). We also developed the authoring tools for users can make their own 3D geo-features and model and save the data to VGFF 2.0 format. We are now expecting the VGFF 2.0 evolve to the 3D version of SVG(Scalable Vector Graphics) especially for 3D GIS on the Web.

  • PDF

Conditional Moment-based Classification of Patterns Using Spatial Information Based on Gibbs Random Fields (깁스확률장의 공간정보를 갖는 조건부 모멘트에 의한 패턴분류)

  • Kim, Ju-Sung;Yoon, Myoung-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1636-1645
    • /
    • 1996
  • In this paper we proposed a new scheme for conditional two dimensional (2-D)moment-based classification of patterns on the basis of Gibbs random fields which are will suited for representing spatial continuity that is the characteristic of the most images. This implementation contains two parts: feature extraction and pattern classification. First of all, we extract feature vector which consists of conditional 2-D moments on the basis of estimated Gibbs parameter. Note that the extracted feature vectors are invariant under translation, rotation, size of patterns the corresponding template pattern. In order to evaluate the performance of the proposed scheme, classification experiments with training document sets of characters have been carried out on 486 66Mhz PC. Experiments reveal that the proposed scheme has high classification rate over 94%.

  • PDF

3D Model Retrieval using Distribution of Interpolated Normal Vectors on Simplified Mesh (간략화된 메쉬에서 보간된 법선 벡터의 분포를 이용한 3차원 모델 검색)

  • Kim, A-Mi;Song, Ju-Whan;Gwun, Ou-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1692-1700
    • /
    • 2009
  • This paper proposes the direction distribution of surface normal vectors as a feature descriptor of three-dimensional models. Proposed the feature descriptor handles rotation invariance using a principal component analysis(PCA) method, and performs mesh simplification to make it robust and nonsensitive against noise addition. Our method picks samples for the distribution of normal vectors to be proportional to the area of each polygon, applies weight to the normal vectors, and applies interpolation to enhance discrimination so that the information on the surface with less area may be less reflected on composing a feature descriptor. This research measures similarity between models with a L1-norm in the probability density histogram where the distances of feature descriptors are normalized. Experimental results have shown that the proposed method has improved the retrieval performance described in an average normalized modified retrieval rank(ANMRR) by about 17.2% and the retrieval performance described in a quantitative discrimination scale by 9.6%~17.5% as compared to the existing method.

  • PDF