• Title/Summary/Keyword: 3D FR

Search Result 262, Processing Time 0.042 seconds

A Study on the Improvement of MIMO Antenna Isolation for Mobile Applications (휴대 단말기용 MIMO 안테나의 격리도 향상에 관한 연구)

  • Yoon, In-Seop;Yan, Xiao-Jia;Kim, Sang-Uk;Jo, Yun-Hyun;Park, Hyo-Dal
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.9
    • /
    • pp.987-992
    • /
    • 2015
  • In this paper, neutralization line structure have been employed to improve the isolation between the MIMO antenna system. The proposed MIMO antenna size is $116mm{\times}64mm{\times}5mm$ and designed on FR-4(${\varepsilon}r=4.4$) ground substrate. Neutralization line was applied to enhance isolation between the each antenna elements. The fabricated antenna satisfied a VSWR below 3 in LTE band B13 and the isolation between the MIMO antenna system is presented below -15dB. On the H-plane, antenna shows an omnidirectional pattern. In LTE band B13, the antenna presents a gain of a -2.6dBi ~-1.18dBi and radiation efficiency of 33.49% ~ 46.45%. Comparing measurement result with the outcome of simulation, the proposed MIMO antenna is expected to be applied for mobile application.

Wibro / WiFi dual-band antenna design for wireless broadband communication (무선 광대역 통신을 위한 Wibro/WiFi 이중대역 안테나 설계)

  • Kim, Gyeong-Rok;Kang, Sung-Woon;Hong, Yong-Pyo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.449-452
    • /
    • 2018
  • In this paper, we design a Wibro / WiFi dual band microstrip antenna for wireless broadband communication. The proposed antenna is designed to have the characteristics of FR-4 (er = 4.3), size of $40[mm]{\times}40[mm]$, and usable in 2.31[GHz] and 5.8[GHz] bands of Wibro / WiFi. The simulation is performed by CST Microwave Studio 2014 The simulation result shows that the gain is 2.308[dB] at 2.31[GHz] and 2.985[dB] at 5.8[GHz]. S-parameters were also found to be less than -10[dB] (WSWR2: 1) in the desired frequency band, and a small number of parameters and a compact antenna were designed. It is expected that many users will use the mobile communication antenna for accurate and fast communication for smooth wireless broadband communication.

  • PDF

Dual Band Microstrip Antenna Design for GPS / WiFi (GPS/WiFi용 이중대역 마이크로스트립 안테나 설계)

  • Kim, Gyeong-Rok;Kang, Sung-Woon;Hong, Yong-Pyo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.445-448
    • /
    • 2018
  • In this paper, we design microstrip antenna for GPS / WiFi for broadband mobile communication. The proposed antenna is designed to be used in the FR-4 (er = 4.3), the size is $40mm{\times}50mm$, and it can be used in the GPS frequency band of 1.6GHz and the WiFi frequency band of 5GHz. 2014, and the simulation result shows that the gain is 1.909dB at 1.6GHz and 4.607dB at 5GHz. The S-parameter also showed a result of less than -10dB (WSWR2: 1) in the desired frequency band. Recently, it is expected that GPS navigation system, which is widely used in smart phones and tablet PCs, can be easily and conveniently used by combining and applying GPS with WiFi.

  • PDF

Bandwidth Broadening for the GPS Microstrip Patch Antenna (GPS용 마이크로스트립 패치안테나의 광대역화)

  • Son, Taeho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.4
    • /
    • pp.73-79
    • /
    • 2015
  • Enhanced bandwidths of the GPS microstrip patch antennas applied by a Wilkinson power divider and a quadrature hybrid were compared. The square patch was designed, and fed by the two port probes for the circuit application. The Wilkinson power divider and quadrature hybrid circuit were designed, and applied to the patch antenna. The designed patch and two circuits were implemented on the FR4 board, and combined together. The measurement of the bandwidth within a voltage standing wave ratio (VSWR) of 2: 1 were 36.5% (1,200~1,775 MHz) in the case of the Wilkinson power divider and 29.84% (1,230~1,700 MHz) in the case of the quadrature hybrid. Axial ratios (AR) in 3dB were 17.14% bandwidth (1,360~1,630 MHz) and 15.87% bandwidth (1,400~1,650 MHz), respectively. The application of the Wilkinson power divider is wider than that of the quadrature hybrid. The peak gains in the anechoic chamber at the GPS center frequency were measured as 2.84 dBi and 2.75 dBi, respectively.

A Parabolic Edge Planar Monopole Antenna for Indoor Digital TV Reception (디지털 TV 실내 수신을 위한 포물선 엣지 형태의 평면 모노폴 안테나)

  • Leem, Jong-Ye;Hur, Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1225-1232
    • /
    • 2009
  • In this paper, a parabolic edge planar monopole antenna for indoor DTV reception is presented. The antenna has broadband property with the planar monopole and ground of parabolic edges. It is designed close to self-complementary structure as changing curvature of edges of monopole and ground. Monopole and ground conductors of the antenna are on the same plane, and excited through CPW feeding. It is fabricated on an FR4 dielectric substrate of $\varepsilon_r=4.4$, and the dimension is $40\;mm{\times}200\;mm{\times}1.6\;mm$. Return loss is larger than 10 dB in 470~806 MHz. Maximum gain is 1.86 dBi on E-plane at 810 MHz and 3.86 dBi on H-plane at 600 MHz.

Dual band antenna design for LTE / WLAN for wireless mobile communication high-speed network (무선 이동통신 고속 통신망을 위한 LTE/WLAN용 이중대역 안테나 설계)

  • Kim, Gyeong-rok;Oh, Mal-geun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.517-521
    • /
    • 2018
  • In this paper, we designed a microstrip antenna for LTE / WLAN for wireless mobile communication high - speed communication network. The substrate of the proposed antenna is FR-4 (er = 4.3), the size is $20[mm]{\times}40[mm]$ and can be used in the frequency band of 2.77 [GHz] and 5 [GHz] Respectively. The simulation was performed using CST Microwave Studio 2014. The simulation result shows that the gain is 2.034 [dBi] at 2.77 [GHz] and 4.95 [dBi] at 5 [GHz]. The S-parameter was also found to be less than -10 [dB] (WSWR 2: 1) in the desired frequency band. The frequency bands of LTE and WLAN are widely used around the world, and the usage of the frequency is also increasing. For this reason, the dual-band antenna of LTE / WLAN is designed to help many users in a good way to use both technologies.

  • PDF

Isolation Enhancement between Two Dual-Band Microstrip Patch Antennas Using EBG Structure without Common Ground Plane (독립된 접지면을 갖는 EBG 구조를 이용한 이중 대역 마이크로스트립 패치 안테나 사이의 격리도 향상)

  • Choi, Won-Sang;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.306-313
    • /
    • 2012
  • In order to enhance the isolation level between two dual-band E-slot microstrip patch antennas, EBG structure which operates in UMTS Tx(1.92~1.98 GHz) and Rx(2.11~2.17 GHz) band is proposed. The proposed EBG structure made with a periodic array of two different size EBG unit cells which has a modified mushroom-type for isolation improvement between two antennas. They do not share a common ground plane of the microstrip patch antenna. Overall size of the fabricated antenna is $210.5mm{\times}117mm$. The two different EBG unit cell sizes are $15.6mm{\times}4mm$ and $17.4mm{\times}4mm$, respectively. It was etched on the FR-4 substrate(thickness=3.93 mm, ${\varepsilon}_r$=4.6). The experiment results show that the isolation level between antennas in Tx/Rx band were improved by about 9 dB and 12 dB, respectively, through the use of the proposed EBG structure.

Compact Dual-Band Planar Antenna with GPS Band (GPS 대역을 포함한 소형화된 이중대역 평면형 안테나)

  • Cho, Gyu-Pil;Shin, Dong-gi;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.232-237
    • /
    • 2020
  • In this paper, a compact microstrip-fed dual-band planar antenna for global positioning system (GPS) and mobile handset applications is presented. Dual operating frequency bands are achieved by an open end L-shaped slot and a bent rectangular slot. The proposed antenna is designed and fabricated on the FR4 substrate with dielectric constant of 4.3, thickness of 1.6 mm and size of 57 × 57 ㎟. The measured impedance bandwidth (|S11|≤ -10dB) of the fabricated antenna is 60 MHz(1550 ~ 1610 MHz) in the GPS band and 670 MHz (1690 ~ 2360 MHz) in the DCS / IMT-2000 band, covering the required bandwidths for GPS(1570 ~ 1580 MHz) and DCS / IMT-2000 (1710 ~ 2200 MHz) bands. In particular, it has been observed that antenna has a good omnidirectional radiation patterns as well as high gain of 2.36 dBi and its efficiency is more than 90 % over the entire frequency band of interest.

3-Element Quasi-Yagi Antenna with a Modified Balun for DTV Reception (변형된 밸런을 갖는 DTV 수신용 3소자 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.672-678
    • /
    • 2017
  • In this paper, we studied a design method for a broadband quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The proposed antenna is composed of a dipole driver, a rectangular patch type director close to the dipole, and a ground reflector printed on an FR4 substrate. A balun between a microstrip line and a coplanar strip (CPS) line is a rectangular patch inserted along the center of the CPS. The end of the balun is connected to the CPS line through a shorting pin. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV, and the characteristics of the designed antenna are examined. The antenna has a good performance such as a frequency band of 430-842 MHz for a voltage standing wave ratio < 2, a gain > 3.7 dBi, and a front-to-back ratio > 7.4 dB.

Gain Enhancement of Series-fed Dipole Pair Antenna Using Director and Parasitic Patches (도파기와 기생 패치를 이용한 직렬-급전 다이폴 쌍 안테나의 이득 향상)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1855-1861
    • /
    • 2017
  • In this paper, the gain enhancement of an SDPA using a director and two parasitic patches is studied. The modified balun is used to increase the bandwidth, whereas the director and two parasitic patches are appended to the SDPA to enhance the gain in the middle and high frequency bands. The effects of the distance between the director and parasitic patches on the antenna performance are analyzed, and the SDPA with a gain over 7 dBi at 1.54-2.99 GHz band is designed. The proposed SDPA is fabricated on an FR4 substrate with a dimension of $90mm(L){\times}135mm(W)$ in order to validate its performance. The fabricated antenna shows a frequency band of 1.56-3.10 GHz for a VSWR < 2, and it is confirmed by measurement that gain maintains over 7 dBi in the frequency range of 1.54-3.00 GHz.