• Title/Summary/Keyword: 3D FR

Search Result 262, Processing Time 0.032 seconds

Design of a Broadband Quasi-Yagi Antenna fed by a Microstrip with a Shorted End (단락종단된 마이크로스트립으로 급전되는 광대역 quasi-Yagi 안테나 설계)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.70-73
    • /
    • 2012
  • In this paper, we introduce a design method for a quasi-Yagi antenna (QYA) with broadband characteristics of an impedance bandwidth ratio of > 2 : 1 and a gain of > 4 dBi. The QYA is fed by a microstrip line fabricated on a coplanar strip line and it consists of 3 elements; a planar dipole, a nearby director close to the dipole, and a ground plane reflector. By placing a rectangular patch-type director with large width near to the dipole driver, broadband characteristics are achieved. An optimized 3-element QYA for operation over 1.6-3.5 GHz (bandwidth ratio 2.2 : 1) is fabricated on an FR4 substrate with a size of $90mm{\times}90mm$ and tested experimentally. The results show an impedance bandwidth of 1.56-3.74 GHz (bandwidth ratio 2.4 : 1) for VSWR < 2, a peak gain of 4.41-6.53 dBi, and a front-to-back ratio (FBR) > 13.6 dB within the bandwidth.

  • PDF

Design of Dual-band Microstrip Array Antenna for WLAN/WiFi (WLAN/WiFi용 이중대역 마이크로스트립 배열 안테나 설계)

  • Kim, Kab-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.27-30
    • /
    • 2016
  • in this paper, to improve the narrow bandwidth problem of the microstrip antenna for WLAN and WiFi dual band array antenna was designed to satisfy the bandwidth of 3.6GHz and 5.2GHz it contained with IEEE 802. 11. The substrate of proposed microstrip array antenna is FR-4(er=4.3) and $25mm{\times}45mm{\times}0.8mm$ size and thickness t=0.035mm, and the simulation was used for CST Microwave Studio 2014. input return loss compared -10dB less than operates at and when gain 3.6GHz 2.516dB, 5.2GHz showed the results of 3.581dB. the antenna designed to be miniaturized and the be used in electronic devices such as mobile phone.

Dual Band Microstrip Antenna for Design Wimax/LTE 5G for Ship Radio Communication (선박 무선통신을 위한 Wimax/LTE 5G 용 이중대역 마이크로스트립 안테나 설계)

  • Lee, Chang Young
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.601-606
    • /
    • 2020
  • In this paper, we designed a microstrip patch antenna that can be applied to the Wimax/LTE 5G system among wireless media usable in coastal ships. The substrate of the proposed antenna is FR-4 (er=4.3), the size is 22 mm × 30 mm, and it can be used in the 3.5 GHz and 5.8 GHz bands of Wimax/LTE 5G by constructing a simple structure using a microstrip patch antenna. CST Microwave Studio 2014 was used for simulation, and the gain of the simulation result is 2.41dB at 2.4 GHz and 3.96 dB at 3.5 GHz. S-Parameter also showed a result of less than -10 dB (VSWR 2:1) in the desired frequency band, and designed a small variable and a miniaturized antenna so that the antenna can be used in mobile phones or electronic devices.

LTE / WiMAX Dual Band Antenna Design for Ultra-wideband Communications (초광대역 통신용 LTE/WiMAX 이중대역 안테나 설계)

  • Kim, Gyeong-Rok;Kang, Sung-Woon;Hong, Yong-Pyo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.441-444
    • /
    • 2018
  • In this paper, a microstrip antenna for LTE / WiMAX is designed for UWB communication. The proposed antenna is designed for FR-4 (er = 4.3), 29[mm] x 45[mm], and can be used in the LTE frequency band of 1.82[GHz] and the WiMAX frequency band of 3.5[GHz]. Studio 2014 was used. The simulation results show 1.785[dB] at 1.82[GHz] and 1.720[dB] at 3.5[GHz]. S-parameters were also found to be less than -10dB (WSWR2: 1) in the desired frequency band. In order to achieve broadband, miniaturization, low cost and low loss, Width, length, width of transmission line, etc. were calculated. Therefore, it is considered that the applicable antenna can be applied satisfying the desired condition.

  • PDF

A 3.3V 10BIT CURRENT-MODE FOLDING AND INTERPOLATING CMOS AJ D CONVERTER USING AN ARITHMETIC FUNCTIONALITY

  • Chung, Jin-Won;Park, Sung-Yong;Lee, Mi-Hee;Yoon, Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.949-952
    • /
    • 2000
  • A low power 10bit current-mode folding and interpolating CMOS analog to digital converter (ADC) with arithmetic folding blocks is presented in this paper. A current-mode two-level folding amplifier with a high folding rate (FR) is designed not only to prevent ADC from increasing a FR excessively, but also to perform a high resolution at a single power supply of 3.3V The proposed ADC is implemented by a 0.6${\mu}$m n-well CMOS single poly/double metal process. The simulation result shows a differential nonlinearity (DNL) of ${\pm}$0.5LSB, an integral nonlinearity (INL) of ${\pm}$1.0LSB

  • PDF

Bandwidth Improvement of Circularly Polarized Microstrip Antenna for an UHF RFID Portable Reader (휴대용 UHF RFID 리더기용 원편파 마이크로스트립 안테나의 대역폭 개선)

  • Kim, Sang-Gi;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.404-410
    • /
    • 2008
  • In this paper, circular polarized microstrip antenna with a conducted hollow cylinder-typed via around the coaxial probe is proposed to enhance the bandwidth of an RFID portable reader microstrip antenna. An antenna of thickness of 6.4 mm and size of $84{\times}84\;mm$ is manufactured with FR4 substrate and its 10 dB return loss bandwidth is measured to be 92 MHz, which is about three times large than the same size's microstrip antenna without hollow cylindrical via. The measured antenna gain and the axial ratio at each are $0.01{\sim}1.825\;dB$ and $2.3{\sim}8.2\;dB$ within 10 dB return loss bandwidth, respectively.

Design and Fabrication of DLP Array Antenna for 3.5 GHz Band (3.5 GHz 대역에서 동작하는 DLP 배열 안테나의 설계 및 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1037-1044
    • /
    • 2021
  • In this paper, we propose DLP(Dual Linear Polarization) array antenna for 3.5 GHz band. The proposed antenna has 1×4 array antenna and design two port network. A cross shape is inserted at the bottom of the patch for impedance matching. The size of each patch antenna is 18.85 mm(W1)×18.85 mm(L1), array antenna is designed on the FR-4 substrate, which is 236.0 mm(W)×60.2 mm(L), thickness (h) 1.6 mm, and the dielectric constant is 4.3. From the fabrication and measurement results, bandwidths of 70 MHz (3.54 to 3.61 GHz) for input port 1, 75 MHz (3.55 to 3.625 GHz) for input port 2 are obtained on the basis of -10 dB return loss and transmission coefficient S21 is under the -20 dB. Also, cross polarization between two port obtained.

On the Application of Multivariate Kendall's Tau and Its Interpretation (다차원 캔달의 타우의 통계학적 응용과 그의 해석)

  • Lee, Woojoo;Ahn, Jae Youn
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.495-509
    • /
    • 2013
  • We study multivariate extension of Kendall's tau and its statistical interpretation. There exist various versions of multivariate Kendall's tau, for example Scarsini (1984), Joe (1990) and Genest et al. (2011); however, few of them mention its lower bounds. For the bivariate case, the Fr$\acute{e}$chet-Hoeffding lower bound can achieve the lower bound of Kendall's tau. However in the multivariate case, the Fr$\acute{e}$chet-Hoeffding lower bound itself does not exist as a distribution, which makes the interpretation of Kendall's tau unclear when it has negative value. In this paper, we explain sufficient conditions to achieve the lower bound of Kendall's tau and provide real data examples that provide further insights into the interpretation for the lower bounds of Kendall's tau.

A Compact Circular-Polarized Microstrip Antenna Using the Slit and Multi-Layer Structure (슬릿 구조와 다층 구조를 이용한 소형 원형 편파 마이크로스트립 안테나)

  • Cho, Sang-Hyeok;Pyo, Seong-Min;Kim, Jung-Min;Lee, In-Young;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.296-302
    • /
    • 2009
  • In this paper, a planar microstrip patch antenna is proposed using the slit on the top layer of a multi-layered structure for GPS application. The proposed antenna has a circular polarization at 1,575.42 MHz. This proposed antenna is fabricated on multi-layered FR4 substrate. The slits embedded on the top plane may yield to lower a resonance frequency and sustain a broad bandwidth. The proposed antenna size is $20{\times}20{\times}4.0\;mm^3$. The measured gain of 0.5 dBi, 10 dB bandwidth(VSWR 2:1) of 70 MHz(4.4 %), and 3 dB axial-ratio bandwidth of 15 MHz(1 %) have been obtained, respectively.

A Hybrid Reader Antenna for Near- and Far-Field RFID in UHF Band (근거리장 및 원거리장용 하이브리드 RFID 리더 안테나)

  • Lee, Chu-Yong;Han, Wone-Keun;Park, Ik-Mo;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.174-182
    • /
    • 2009
  • In this paper, we propose a novel hybrid reader antenna using a triangular and rectangular sub-patch for near- and far-field RFID reader in UHF band. The antenna operates at 912 MHz, and the low-cost mass-production is available, since the antenna can be built by printing on a FR-4 substrate. The triangular patch is designed to produce a circularly polarized radiation along the bore-sight direction and the rectangular sub-patch is designed to generate a strong magnetic field over the antenna aperture. The measurement shows Hz field greater than -25 dBA/m(3 cm above the antenna aperture), and exhibits circularly polarized radiation(AR<3 dB) with a radiation gain of 6 dBi.