• Title/Summary/Keyword: 3D FE

Search Result 1,570, Processing Time 0.028 seconds

Hot Forging Design for a Large Scale Compressor Wheel (대형 압축기 휠의 열간단조 공정설계)

  • 임정숙;염종택;김현규;박노광
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.47-50
    • /
    • 2003
  • Hot-forging Process and die design was made for a large-scale compressor wheel of Ti-6Al-4V alloy with 2-D FE analysis. The design integrated the geometry-controlled approach and dynamic materials modelling(DMM). In order to obtain the processing contour map of Ti-6Al-4V alloy based on DMM, compression tests were carried out in the temperature range of 915$^{\circ}C$ to 1015$^{\circ}C$ and the strain range of 10$\^$-3/s$\^$-1/ to 10s$\^$-1/. In the die design of the compressor wheel using the rigid-plastic FE analysis, forging dimensional accuracy, the capacity of the forging machine and defect-free forging were considered as main design factors. The microstructure of hot forged wheel using the designed die showed a typical alpha-beta structure without forging-defects.

  • PDF

Removal of Linear Alkylbenzenesulfonate by Fenton's Oxidants and Coagulation

  • Hwan Lee;Yoon Jin Lee;Hea Tae Kim;Sang Ho Nam
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.71-78
    • /
    • 2001
  • 본 연구는 폐수 중 함유된 고농도의 LAS를 제거하기 위해 $FeSO_4$를 이용한 응집, 펜톤산화, 펜톤 공정 전.후에 응집공정을 조합시킨 Coagu-oxidation 및 Renton's Coagulation을 이용하여, 처리 시 최적 조건을 도출하고, 효율적인 화학적 처리방법을 검토하기 위해 수행되었다. 연구로부터 얻어진 결론은 다음과 같다. 응집공정은 pH 8, 응집제의 주입량 200mg/L인 조건에서, 펜톤산화는 pH 3, $H_2$$O_2$에 대한 ${Fe^2}^{+}$의 비가 1:1인 조건에서 최적효율을 보였다. Fenton's Coagulation 처리 시 LAS의 개환율은 높아졌고, 주입된 LAS농도의 73~96%가 제거되어 4가지 처리 방법 중 가 장 좋은 처리효율을 보였다. 따라서, LAS의 생물학적 처리 시 거품 및 부산물 생성 등에 의해 저해작용을 감안한다면, LAS가 다량으로 함유한 산업 폐수에서 화학적 처리방법의 도 입이 적절할 것으로 생각되며, 이들 중 Fenton's Coagulation을 유용하게 적용될 수 있을 것으로 판단된다.

  • PDF

FE analysis of Extrusion Process and Estimation of welding strength for Micro Multi Cell Tube with Serration (세레이션형 미세 멀티셀 튜브 압출 및 접합강도 평가)

  • Lee Jung Min;Kim Byung Min;Jo Hyung Ho;Kang Chung Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.49-59
    • /
    • 2005
  • This paper describes a development of the extrusion process and estimation of the weldability for multi cell tubes used to cooling system of automobiles. A study on extrusion process is performed through the 3D FE simulation in non-steady state and extrusion experimentation. Also, nano-indentation test is employed to estimate the weldability of tubes. Especially, An evaluation of the weldability using the nano-indentation is accomplished as compared with nano-hardness in welded part and in the others. Finally, the pattern of the mandrel defection is investigated according to shapes of the porthole and/or chamber.

Lower Bound Net-Section Limit Loads for Circumferential Part-Through Surface Cracked Pipes under Combined Pressure and Bending (내압과 굽힘의 복합하중을 받는 원주방향 표면균열 배관에 대한 하한계 실단면 한계하중)

  • Oh, Chang-Kyun;Kim, Jong-Sung;Jin, Te-Eun;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1772-1777
    • /
    • 2007
  • This paper provides plastic limit loads of pipes with constant-depth, circumferential part-through surface cracks under combined pressure and bending. A key issue is to postulate discontinuous hoop stress distributions in the net-section. Validity of the proposed limit load solutions is checked against the results from three-dimensional (3-D) finite element (FE) limit analyses using elastic-perfectly plastic material behavior.

  • PDF

Effect of Internal Pressure on Plastic Limit Loads for Elbows with Circumferential Through-wall Crack under Closing Bending Incorporating Large Geometry Change Effects (대변형 효과를 고려한 원주방향 관통균열 엘보우의 닫힘굽힘 한계하중에 미치는 내압 영향 평가)

  • Hong, Seok-Pyo;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1778-1782
    • /
    • 2007
  • Based on three-dimensional (3-D) FE limit analyses, this paper estimates effect of internal pressure on plastic limit loads for elbows with circumferential through-wall crack under in-plane bending incorporating large geometry change effects. Circumferential through-wall crack in extrados is considered. The FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method). For the bending mode, closing bending is considered. Other relevant variables affecting plastic limit loads are systematically varied, related to pipe bend geometry (the mean radius, thickness and bend curvature) and defect geometry (the length of circumferential through-wall crack).

  • PDF

Limit Load Solutions for Piping Branch Junctions with local wall-thinning under Internal Pressure (감육이 존재하고 내압을 받는 T 분기관의 한계하중 평가식)

  • Ryu, Kang-Mook;Kim, Yun-Jae;Lee, Kuk-Hee;Park, Chi-Yong;Lee, Sung-Ho;Kim, Tae-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1813-1817
    • /
    • 2007
  • The present work presents plastic limit load solutions for piping branch junctions with local wall-thinning, based on detailed three-dimensional (3-D) and small strain FE limit analyses using elastic-perfectly plastic materials. Three types of loading are considered; internal pressure, in-plane bending on the branch pipe and in-plane bending on the run pipe. The wall-tinning located on variable area of the piping branch junction is considered. A wide range of piping branch junction and wall-thinning geometries are considered. Comparison of the proposed solutions with FE results shows good agreement

  • PDF

FE Analysis and Die Design of The Multi-stage Rectangular Deep Drawing Process with the Large Aspect Ratio (세장비가 큰 다단계 사각형 디프드로잉 성형공정해석 및 금형설)

  • 김홍주;구태완;강범수
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.456-464
    • /
    • 2001
  • Deep drawing and ironing are tile major process today in manufacturing of aluminum alloy battery case used in cellular phone. Most of these process require multi-stage ironing following the deep drawing and redrawing processes. The practical aspects of this technology are well known and gained through extensive experiment and production know-how. However, the fundamental aspects of these processes are relatively less known. Thus, it is expected that process analysis using FEM techniques would provide additional detailed information that could be utilized to improve the process condition. This paper illustrates the application of process modeling to deep drawing and redrawing operations. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product. A commercially available finite element code LS-DYNA3D was used to simulate deep drawing and redrawing operations.

  • PDF

Parametric Design on Bellows of Piping System Using Fuzzy Knowledge Processing

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

Non-Linear Fracture Mechanics Analyses for Axial Semi-Elliptical Surface Cracked Pipes (배관 내 축방향 반타원 표면균열에 대한 비선형 파괴역학 해석)

  • Kim, Jin-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.143-148
    • /
    • 2003
  • This paper provides two types of engineering J estimation equations for cylinders with finite internal axial surface cracks under internal pressure. The first type is the so-called GE/EPRI type J estimation equation based on Ramberg-Osgood materials. Based on detailed 3-D FE results the GE/EPRI-type J estimation equation along the crack front is proposed and validated for Ramberg-Osgood materials. For more general application, the developed GE/EPRI-type solutions are then re-formulated based on the reference stress concept. The proposed reference stress based J estimation equation has good agreement between the FE results and the proposed reference stress based J estimation provides confidence in the use of the proposed method for elastic-plastic fracture mechanics of pressurised piping

  • PDF

An Analysis of Backward Extrusion Process with Torsion (비틀림을 이용한 후방압출 공정의 해석)

  • 허진혁;김영호;박재훈;진영은;이종헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.846-849
    • /
    • 2000
  • In this paper backward extrusion process with lower die rotation was studied to improve the conventional backward extrusion problems ; requirement of large forming machine, the difficulty to selecting of die material caused by high surface pressure, high cost of forming machine caused by improvement of noise and vibration, and etc. In this experiment, model material, plasticine, was used of specimen. The result values of torsional and conventional backward extrusions were analyzed and compared. FE-simulation is used for analysis with DEFPRM-3D. These results show that the torsional backward extrusion is very useful process because this process can obtain the homogeneous deformation, low forming load. Decreasing forming load improves die life and makes it possible to use press of relatively low capacity. Also this process can reduce corner cavity, improve the initial cast-structure, owing to the high deformation and uniform starin distribution.

  • PDF