• Title/Summary/Keyword: 3D Environment Reconstruction

Search Result 83, Processing Time 0.032 seconds

Geophysical Surveys for Investigating the Groundwater Environment of the Chojeong, Chungbuk (충북 초정지역의 지하수환경 조사를 위한 지표지구물리탐사)

  • 김지수;한수형;김경호;신재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.103-106
    • /
    • 2000
  • Geophysical data sets from the Chojeong area in the Chungbuk-Do are compositely studied in terms of multi-attribute interpretation for the subsurface mapping of shallow fracture zones, associated with groundwater reservoir. Utilizing a GIS software, the attribute data are implemented to a database; a lineament from the satellite image, electrical resistivities and its standard deviation, radioactivity, seismic velocity, bedrock depth from exploration data. In an attempt to interpret 1-D electrical sounding data in 2-D and 3-D views, 2-D resistivities structures are firstly made by interpolating 1-D plots. Reconstruction of a resistivity volume is found to be an effective scheme for subsurface mapping of shallow fracture zones. Shallow fracture zones in the southeastern part of the study area are commonly correlated in the various exploration data.

  • PDF

The Study of automated inspection technology using a three-dimensional reconstruction of stereo X-ray image based dual-sensor Environment (Dual-Sensor 기반 스테레오 X-선 영상의 3차원 형상복원기술을 이용한 검색 자동화를 위한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Kim, Jong-Ryul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.695-698
    • /
    • 2014
  • As most the scanning systems developed until now provide radiation scan plane images of the inspected objects, there has been a limitation in judging exactly the shape of the objects inside a logistics container exactly with only 2-D radiation image information. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. In this paper, we proposed a new volume based 3D reconstruction algorithm and experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for the development of the high speed and more efficient non-destructive auto inspection system.

  • PDF

A New 3D Depth Reconstruction Method Adaptive to Various Environments (환경 적응적 3D 깊이 재구성 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.271-279
    • /
    • 2016
  • The recent development of the HD (High Definition) and UHD (Ultra High Definition) technology allowed the growth of 3D contents market. Yet the majority of the 3D contents in the market are strictly for 6.5 cm inter-ocular distance, causing various visual discomforts for the viewers who have different inter-ocular distance. Moreover, because the 3D contents are created for a fixed viewing distance, the change of the viewing distances when watching 3D contents can also cause visual conflicts. To solve this problem, we devised techniques that consider the environmental information of the viewer watching 3D contents. By analyzing the relationship between viewing distance, inter-ocular distance, and perceived depth, we created an adaptive content viewing system that reflects the viewer's environment to minimize any conflicts in watching 3D contents. From our experiments, we found that the performance of our adaptive content viewing system was reasonable.

3D RECONSTRUCTION OF LANDSCAPE FEATURES USING LiDAR DATAAND DIGITAL AERIAL PHOTOGRAPH FOR 3D BASED VISIBILITY ANALYSIS

  • Song, Chul-Chul;Lee, Woo-Kyun;Jeong, Hoe-Seong;Lee, Kwan-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.548-551
    • /
    • 2007
  • Among components of digital topographic maps used officially in Korea, only contours have 3D values except buildings and trees that are demanded in landscape planning. This study presented a series of processes for 3Dreconstructing landscape features such as terrain, buildings and standing trees using LiDAR (Light Detection And Ranging) data and aerial digital photo graphs. The 3D reconstructing processes contain 1) building terrain model, 2) delineating outline of landscape features, 3) extracting height values, and 4) shaping and coloring landscape features using aerial photograph and 3-D virtual data base. LiDAR data and aerial photograph was taken in November 2006 for $50km^{2}$ area in Sorak National Park located in eastern part of Korea. The average scanning density of LiDAR pulse was 1.32 points per square meter, and the aerial photograph with RGB bands has $0.35m{\times}0.35m$ spatial resolution. Using reconstructed 3D landscape features, visibility with the growing trees with time and at different viewpoints was analyzed. Visible area from viewpoint could be effectively estimated considering 3D information of landscape features. This process could be applied for landscape planning like building scale with the consideration of surrounding landscape features.

  • PDF

Designing a Reinforcement Learning-Based 3D Object Reconstruction Data Acquisition Simulation (강화학습 기반 3D 객체복원 데이터 획득 시뮬레이션 설계)

  • Young-Hoon Jin
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.11-16
    • /
    • 2023
  • The technology of 3D reconstruction, primarily relying on point cloud data, is essential for digitizing objects or spaces. This paper aims to utilize reinforcement learning to achieve the acquisition of point clouds in a given environment. To accomplish this, a simulation environment is constructed using Unity, and reinforcement learning is implemented using the Unity package known as ML-Agents. The process of point cloud acquisition involves initially setting a goal and calculating a traversable path around the goal. The traversal path is segmented at regular intervals, with rewards assigned at each step. To prevent the agent from deviating from the path, rewards are increased. Additionally, rewards are granted each time the agent fixates on the goal during traversal, facilitating the learning of optimal points for point cloud acquisition at each traversal step. Experimental results demonstrate that despite the variability in traversal paths, the approach enables the acquisition of relatively accurate point clouds.

A study on roughing planning by 2D criss sectional information generated from sculptured surfaces (자유곡면으로부터 단면정보를 이용한 황삭계획에 관한 연구)

  • 안대건;최홍태;이석희
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.187-196
    • /
    • 1994
  • This study deals with roughing planning by cross sectional information generated from sculptured surfaces. Bicubic Bezier surface is adopted as sculptured surfaces in this paper. The system consists of 3 pstyd : 1) modeling sculptured surface, 2) reconstruction of cross-section in 2D coordinates, 3) determination of roughing tool path with structural data. The system is developed by using BIM-PC in the environment of Auto CAD R11, AutoLISP and MetaWare C. The proposed system shows an efficient algorithm for roughing planning with cross sectional information.

3D Point Cloud Enhancement based on Generative Adversarial Network (생성적 적대 신경망 기반 3차원 포인트 클라우드 향상 기법)

  • Moon, HyungDo;Kang, Hoonjong;Jo, Dongsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1452-1455
    • /
    • 2021
  • Recently, point clouds are generated by capturing real space in 3D, and it is actively applied and serviced for performances, exhibitions, education, and training. These point cloud data require post-correction work to be used in virtual environments due to errors caused by the capture environment with sensors and cameras. In this paper, we propose an enhancement technique for 3D point cloud data by applying generative adversarial network(GAN). Thus, we performed an approach to regenerate point clouds as an input of GAN. Through our method presented in this paper, point clouds with a lot of noise is configured in the same shape as the real object and environment, enabling precise interaction with the reconstructed content.

Registration Technique of Partial 3D Point Clouds Acquired from a Multi-view Camera for Indoor Scene Reconstruction (실내환경 복원을 위한 다시점 카메라로 획득된 부분적 3차원 점군의 정합 기법)

  • Kim Sehwan;Woo Woontack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.39-52
    • /
    • 2005
  • In this paper, a registration method is presented to register partial 3D point clouds, acquired from a multi-view camera, for 3D reconstruction of an indoor environment. In general, conventional registration methods require a high computational complexity and much time for registration. Moreover, these methods are not robust for 3D point cloud which has comparatively low precision. To overcome these drawbacks, a projection-based registration method is proposed. First, depth images are refined based on temporal property by excluding 3D points with a large variation, and spatial property by filling up holes referring neighboring 3D points. Second, 3D point clouds acquired from two views are projected onto the same image plane, and two-step integer mapping is applied to enable modified KLT (Kanade-Lucas-Tomasi) to find correspondences. Then, fine registration is carried out through minimizing distance errors based on adaptive search range. Finally, we calculate a final color referring colors of corresponding points and reconstruct an indoor environment by applying the above procedure to consecutive scenes. The proposed method not only reduces computational complexity by searching for correspondences on a 2D image plane, but also enables effective registration even for 3D points which have low precision. Furthermore, only a few color and depth images are needed to reconstruct an indoor environment.

A Study on Real-Time Localization and Map Building of Mobile Robot using Monocular Camera (단일 카메라를 이용한 이동 로봇의 실시간 위치 추정 및 지도 작성에 관한 연구)

  • Jung, Dae-Seop;Choi, Jong-Hoon;Jang, Chul-Woong;Jang, Mun-Suk;Kong, Jung-Shik;Lee, Eung-Hyuk;Shim, Jae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.536-538
    • /
    • 2006
  • The most important factor of mobile robot is to build a map for surrounding environment and estimate its localization. This paper proposes a real-time localization and map building method through 3-D reconstruction using scale invariant feature from monocular camera. Mobile robot attached monocular camera looking wall extracts scale invariant features in each image using SIFT(Scale Invariant Feature Transform) as it follows wall. Matching is carried out by the extracted features and matching feature map that is transformed into absolute coordinates using 3-D reconstruction of point and geometrical analysis of surrounding environment build, and store it map database. After finished feature map building, the robot finds some points matched with previous feature map and find its pose by affine parameter in real time. Position error of the proposed method was maximum. 8cm and angle error was within $10^{\circ}$.

  • PDF

A study on the virtual indoor Scene navigation

  • Kim, Yeong-Seok;Jho, Cheung-Woon;Yoon, Kyung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.153.5-153
    • /
    • 2001
  • This paper presents a simple modeling system that constructs 3D models from an indoor cylindrical environment map using all of the available geometry of the interior structure such as vertical and horizontal lines and parallel and perpendicular planes. The indoor scene abstract model is created through this system and the navigation through the process of 3D reconstruction. This system first automatically detects the vanishing points in a cylindrical environment map from parallel lines and planes, and determines the indoor scene topology previously defined using this information. The determined topology enables he user intervention UI simply construct a 3D model by using the photogrammetry. The modeling system can be ...

  • PDF