• 제목/요약/키워드: 3D Environment Recognition

검색결과 154건 처리시간 0.024초

지역적 불변특징 기반의 3차원 환경인식 및 모델링 (Recognition and Modeling of 3D Environment based on Local Invariant Features)

  • 장대식
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.31-39
    • /
    • 2006
  • 본 논문에서는 지능로봇. 지능형자동차. 지능형빌딩 등에 다양하게 활용될 수 있는 3차원 환경과 여기에 포함된 물체의 실시간 인식을 위한 새로운 접근 방법을 제안한다. 본 논문에서는 먼저 사람이 환경을 인식하고 상호작용하는 데 사용하는 3가지 기본 원칙을 설정하고, 이 기본 원칙들을 이용하여 실시간 3차원 환경 및 물체 인식을 위한 통합된 방법을 제시한다. 이들 3가지 기본 원칙은 다음과 같다. 첫째, 전역 적인 평면 특징들을 인식함으로써 작업환경의 기하학적 구조에 대한 개략적 특성화를 고속으로 진행한다. 둘째, 작업환경 속에서 기존에 알려진 물체를 먼저 빠르게 인식하고 이를 데이터베이스 내에 저장되어 있는 물체의 모델로 교체한다. 셋째, 다중 해상도 Octree 표현 방법을 이용하여 기타 영역을 주어진 작업의 필요에 따라 적응적으로 실시간 모델링 한다. 본 논문에서는 3차원 SIFT로 언급되는 3차원 좌표를 가지는 SIFT특징들을 3차원 좌표정보와 함께 확장하여 사용함으로서 전역적 평면 특징의 빠른 추출, 고속의 물체 인식, 빠른 장면 정합 등의 기능에 활용하고 이와 동시에 스테레오 카메라로부터 입력되는 3차원 좌표의 잡음과 불완전성을 극복한다.

  • PDF

지능로봇을 위한 3차원 환경인식 (Recognition of 3D Environment for Intelligent Robots)

  • 장대식
    • 인터넷정보학회논문지
    • /
    • 제7권5호
    • /
    • pp.135-145
    • /
    • 2006
  • 본 논문에서는 지능로봇에 활용될 수 있는 3차원 환경과 석기에 포함된 물체의 실시간 인식을 위한 새로운 접근 방법을 제안한다. 본 논문에서는 먼저 사람이 환경을 인식하고 상호작용하는 데 사용하는 3 가지 기본 원칙을 설정하고, 이 기본 원칙들을 이용하여 실시간 3차원 환경 및 물체 인식을 위한 통합된 방법을 제시한다. 이들 3가지 기본 원칙은 다음과 같다. 첫째, 전역적인 평면 특징들을 인식함으로써 작업환경의 기하적 구조에 대한 개략적 특성화를 고속으로 진행한다. 둘째, 작업환경 속에서 기존에 알려진 물체를 먼저 빠르게 인식하고 이를 데이터베이스 내에 저장되어 있는 물체의 모델로 교체한다. 셋째, 다중 해상도 Octree표현 방법을 이용하여 기타 영역을 주어진 작업의 필요에 따라 적응적으로 실시간으로 모델링 한다. 본 논문에서는 3차원 SIFT로 언급되는 3차원 좌표를 가지는 SiFT특징들을 3차원 좌표정보와 함께 확장하여 사용함으로서 전역적 평면 특징의 빠른 추출, 고속의 물체 인식, 빠른 장면 정합 등의 기능에 활용하고 이와 동시에 스테레오 카메라로부터 입력되는 3차원 좌표의 잡음과 불완전성을 극복한다. 실험 결과에서는 본 논문에서 제안하는 지능형로봇의 조작 작업을 위한 실시간의 행위 중심의 3차원 환경모델링의 가능성을 보여준다.

  • PDF

A New Robust Signal Recognition Approach Based on Holder Cloud Features under Varying SNR Environment

  • Li, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권12호
    • /
    • pp.4934-4949
    • /
    • 2015
  • The unstable characteristic values of communication signals along with the varying SNR (Signal Noise Ratio) environment make it difficult to identify the modulations of signals. Most of relevant literature revolves around signal recognition under stable SNR, and not applicable for signal recognition at varying SNR. To solve the problem, this research developed a novel communication signal recognition algorithm based on Holder coefficient and cloud theory. In this algorithm, the two-dimensional (2D) Holder coefficient characteristics of communication signals were firstly calculated, and then according to the distribution characteristics of Holder coefficient under varying SNR environment, the digital characteristics of cloud model such as expectation, entropy, and hyper entropy are calculated to constitute the three-dimensional (3D) digital cloud characteristics of Holder coefficient value, which aims to improve the recognition rate of the communication signals. Compared with traditional algorithms, the developed algorithm can describe the signals' features more accurately under varying SNR environment. The results from the numerical simulation show that the developed 3D feature extraction algorithm based on Holder coefficient cloud features performs better anti-noise ability, and the classifier based on interval gray relation theory can achieve a recognition rate up to 84.0%, even when the SNR varies from -17dB to -12dB.

3D 비접촉 인식을 이용한 냉연코일 테이프부착 로봇 개발 (Development of Smart Tape Attachment Robot in the Cold Rolled Coil with 3D Non-Contact Recognition)

  • 신찬배;김진대
    • 제어로봇시스템학회논문지
    • /
    • 제15권11호
    • /
    • pp.1122-1129
    • /
    • 2009
  • Recently taping robot with smart recognition function have been studied in the coil manufacturing field. Due to the difficulty of 3D surface processing from the complicated working environment, it is not easy to accomplish smart tape attachment motion with non-contact sensor. To solve these problems the applicable surface recognition algorithm and a flexible sensing device has been recommended. In this research, the fusion method between 1D displacement and 3D laser scanner is applied for robust tape attachment about cold rolled coil. With these sensors we develop a two-step exploration and the smart algorithm for the awareness of non-aligned coil's information. In the proposed robot system for tape attachment, the problem is reduced to coil's radius searching with laser displacement sensor at first, and then position and orientation detection with 3D laser scanner. To get the movement at the robot's base frame, the hand-eye compensation between robot's end effector and sensing device should be also carried out respectively. In this paper, we examine the auto-coordinate transformation method in the calibration step for the real environment usage. From the experimental results, it was shown that the taping motion of robot had a robust under the non-aligned cold rolled coil.

Intelligent 3D Obstacles Recognition Technique Based on Support Vector Machines for Autonomous Underwater Vehicles

  • Mi, Zhen-Shu;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권3호
    • /
    • pp.213-218
    • /
    • 2009
  • This paper describes a classical algorithm carrying out dynamic 3D obstacle recognition for autonomous underwater vehicles (AUVs), Support Vector Machines (SVMs). SVM is an efficient algorithm that was developed for recognizing 3D object in recent years. A recognition system is designed using Support Vector Machines for applying the capabilities on appearance-based 3D obstacle recognition. All of the test data are taken from OpenGL Simulation. The OpenGL which draws dynamic obstacles environment is used to carry out the experiment for the situation of three-dimension. In order to verify the performance of proposed SVMs, it compares with Back-Propagation algorithm through OpenGL simulation in view of the obstacle recognition accuracy and the time efficiency.

토공 작업환경의 3차원 모델링 시스템 개발에 관한 연구 (A Study on Development of the 3D Modeling System for Earthwork Environment)

  • 유현석;채명진;김정렬;조문영
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2007년도 정기학술발표대회 논문집
    • /
    • pp.977-982
    • /
    • 2007
  • 건설자동화 장비의 개발에 있어서 주변 사물을 인식하고 효과적으로 모델링하기 위한 노력은 지속적으로 이루어져 왔다. 이 연구는 지능형 굴삭 로봇 개발의 요소기술로서, 3D 레이저 스캐너를 이용하여 토공 작업환경을 3차원으로 모델링하고, 객체화된 모델링 정보를 이용하여 지능적인 작업 계획을 수립하기 위한 기반 연구이다. 이 연구에서는 먼저 3D 레이저 스캐너의 시장 동향을 분석하였고 토공 작업환경을 대상으로 3D 레이저 스캐너의 성능을 비교 분석하여 토공 현장에서 적합한 3D 레이저 스캐너를 선정하였다. 그리고 3D 모델링 시스템의 하드웨어 구서을 제시하였고 전체 소프트웨어의 컨셉을 설계하였다. 다음으로 소프트웨어 상세 기능 설계 및 사용자 인터페이스 설계를 통해 향후 photogrammetry 및 객체인식 기술의 적용을 위한 프레임워크를 구축하였다. 이 연구에서는 실제 토공현장을 대상으로 개발된 소프트웨어와 토탈 스테이션을 이용하여 타겟간의 상대거리를 측정하고 3D 모델링 시스템의 정확성을 측정하였다.

  • PDF

POSITION AND POSTURE ESTIMATION OF 3D-OBJECT USING COLOR AND DISTANCE INFORMATION

  • Ji, Hyun-Jong;Takahashi, Rina;Nagao, Tomoharu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.535-540
    • /
    • 2009
  • Recently, autonomous robots which can achieve the complex tasks have been required with the advance of robotics. Advanced robot vision for recognition is necessary for the realization of such robots. In this paper, we propose a method to recognize an object in the actual environment. We assume that a 3D-object model used in our proposal method is the voxel data. Its inside is full up and its surface has color information. We also define the word "recognition" as the estimation of a target object's condition. This condition means the posture and the position of a target object in the actual environment. The proposal method consists of three steps. In Step 1, we extract features from the 3D-object model. In Step 2, we estimate the position of the target object. At last, we estimate the posture of the target object in Step 3. And we experiment in the actual environment. We also confirm the performance of our proposal method from results.

  • PDF

음성 에너지 분포 처리와 에너지 파라미터를 융합한 음성 인식 성능 향상 (Voice Recognition Performance Improvement using a convergence of Voice Energy Distribution Process and Parameter)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제13권10호
    • /
    • pp.313-318
    • /
    • 2015
  • 전통적인 음성 향상 방법은 잘못된 잡음의 추정에 따라 남아있는 잡음이 발생하여 음성 스펙트럼을 왜곡하거나 음성 프레임을 찾지 못하여 음성 인식 성능을 저하시키는 문제가 발생된다. 본 논문에서는 음성 에너지 분포 처리와 음성 에너지 파라미터를 융합한 음성 검출 방법을 제안하였다. 제안한 방법은 음성 에너지를 최대화시켜 잡음의 영향을 적게 받는 특성을 이용하였다. 또한, 음성 신호의 특징 파라미터 중에서 작은 값을 가지는 로그에너지 특징의 구간에서는 큰 에너지를 가지는 구간에 비해 상대적으로 로그에너지 값을 더 많이 키워서 잡음이 포함한 음성신호의 로그에너지 특징의 크기와 비슷하게 하여 훈련과 인식 환경의 불일치를 융합으로 인해 줄여준다. 인식 실험 결과 기존 방법에 비해 향상된 인식 성능을 확인할 수 있었으며, car 잡음 환경의 음성 구간 적중률은 낮은 SNR구간인 0dB과 5dB에서는 97.1%와 97.3%의 정확도를 보였으며, 높은 SNR구간인 10dB와 15dB에서는 98.3%, 98.6%의 정확도를 보였다.

혼재된 환경에서의 효율적 로봇 파지를 위한 3차원 물체 인식 알고리즘 개발 (Development of an Efficient 3D Object Recognition Algorithm for Robotic Grasping in Cluttered Environments)

  • 송동운;이재봉;이승준
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.255-263
    • /
    • 2022
  • 3D object detection pipelines often incorporate RGB-based object detection methods such as YOLO, which detects the object classes and bounding boxes from the RGB image. However, in complex environments where objects are heavily cluttered, bounding box approaches may show degraded performance due to the overlapping bounding boxes. Mask based methods such as Mask R-CNN can handle such situation better thanks to their detailed object masks, but they require much longer time for data preparation compared to bounding box-based approaches. In this paper, we present a 3D object recognition pipeline which uses either the YOLO or Mask R-CNN real-time object detection algorithm, K-nearest clustering algorithm, mask reduction algorithm and finally Principal Component Analysis (PCA) alg orithm to efficiently detect 3D poses of objects in a complex environment. Furthermore, we also present an improved YOLO based 3D object detection algorithm that uses a prioritized heightmap clustering algorithm to handle overlapping bounding boxes. The suggested algorithms have successfully been used at the Artificial-Intelligence Robot Challenge (ARC) 2021 competition with excellent results.

회전무관 3D Star Skeleton 특징 추출 (Rotation Invariant 3D Star Skeleton Feature Extraction)

  • 전성국;홍광진;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권10호
    • /
    • pp.836-850
    • /
    • 2009
  • 포즈인식은 최근에 유비쿼터스 환경, 행위 예술, 로봇 제어 등에서 그 필요성이 증가되고 있는 분야로써, 컴퓨터비전, 패턴인식 등에서 활발히 연구되고 있다. 하지만 기존의 포즈인식 연구들은 사람의 회전이나 이동에 따라서 불안정한 인식률을 보인다는 단점을 갖고 있다. 이는 포즈 인식을 위해 추출한 특징이 사람의 회전, 이동 등의 다양한 변수에 영향을 크게 받기 때문이다. 이를 극복하기 위하여 본 논문에서는, 다 시점(multi-view) 환경에서의 3D Star Skeleton과 주성분 분석(principal component analysis: PCA)에 기반한 사람의 회전에 강건한 특징 추출을 제안한다. 제안된 시스템은 포즈의 특징 추출을 위해 다 시점 환경 기반의 visual hull을 생성하는 과정에서 획득 가능한 깊이 정보를 표현하는 8개의 projection map을 입력데이터로 사용한다. 이를 통해 포즈의 3D 정보를 반영하는 3D Star Skeleton을 구성하고 주성분 분석 기반의 회전에 강건한 특징을 추출한다. 실험결과에서는 다양하게 회전된 사람으로부터 생성된 3D Star Skeleton에서 특징을 추출하고 다양한 인식기를 통해 포즈인식을 해보았으며, 제안된 특징 추출 방법이 사람의 회전에 강건함을 알 수 있었다.