• Title/Summary/Keyword: 3D Effect

Search Result 11,090, Processing Time 0.044 seconds

The Effect of Public R&D Support on R&D Investment of Korean Medium-sized Firms (정부의 연구개발 지원이 중견기업의 투자에 미치는 효과)

  • Ahn, Seungku;Kim, Jungho;Kim, Juil
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.3
    • /
    • pp.546-575
    • /
    • 2017
  • This paper investigates the effects of public R&D support on medium-sized firms' R&D investment. The paper collects a panel dataset of Korean manufacturing firms' R&D investment and public support, and employs the DID (difference-in-differences) regression for the test of stimulating or crowding-out effect. Empirical analysis examines how the effect of public R&D support differs between small and medium-sized firms and whether firm size and technological capability moderate the effect in the sample of medium-sized firms. Empirical results show that public R&D support tends to generally stimulate private pure R&D investment for both small and medium-sized firms. Comparing the results for small and medium-sized firms, this paper finds that the stimulating effect is relatively larger and more significant for medium-sized firms, while the effect is not significant for small ones. Furthermore, the paper shows that the stimulating effect of public R&D subsidy on private R&D investment is relatively stronger for medium-sized firms with superior technological competence and the effect of tax support is greater for incompetent firms. These results suggest that public R&D policies and R&D programs, differentiated from those for existing small firms, are necessary for medium-sized firms to stimulate private R&D continuously and formulated carefully by considering firm size, technological capability and growth potential.

Mannosylerythritol lipids ameliorate ultraviolet A-induced aquaporin-3 downregulation by suppressing c-Jun N-terminal kinase phosphorylation in cultured human keratinocytes

  • Bae, Il-Hong;Lee, Sung Hoon;Oh, Soojung;Choi, Hyeongwon;Marinho, Paulo A.;Yoo, Jae Won;Ko, Jae Young;Lee, Eun-Soo;Lee, Tae Ryong;Lee, Chang Seok;Kim, Dae-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • Mannosylerythritol lipids (MELs) are glycolipids and have several pharmacological efficacies. MELs also show skin-moisturizing efficacy through a yet-unknown underlying mechanism. Aquaporin-3 (AQP3) is a membrane protein that contributes to the water homeostasis of the epidermis, and decreased AQP3 expression following ultraviolet (UV)-irradiation of the skin is associated with reduced skin moisture. No previous study has examined whether the skin-moisturizing effect of MELs might act through the modulation of AQP3 expression. Here, we report for the first time that MELs ameliorate the UVA-induced downregulation of AQP3 in cultured human epidermal keratinocytes (HaCaT keratinocytes). Our results revealed that UVA irradiation decreases AQP3 expression at the protein and messenger RNA (mRNA) levels, but that MEL treatment significantly ameliorated these effects. Our mitogen-activated protein kinase inhibitor analysis revealed that phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38, mediates UVA-induced AQP3 downregulation, and that MEL treatment significantly suppressed the UVA-induced phosphorylation of JNK. To explore a possible mechanism, we tested whether MELs could regulate the expression of peroxidase proliferator-activated receptor gamma ($PPAR-{\gamma}$), which acts as a potent transcription factor for AQP3 expression. Interestingly, UVA irradiation significantly inhibited the mRNA expression of $PPAR-{\gamma}$ in HaCaT keratinocytes, whereas a JNK inhibitor and MELs significantly rescued this effect. Taken together, these findings suggest that MELs ameliorate UVA-induced AQP3 downregulation in HaCaT keratinocytes by suppressing JNK activation to block the decrease of $PPAR-{\gamma}$. Collectively, our findings suggest that MELs can be used as a potential ingredient that modulates AQP3 expression to improve skin moisturization following UVA irradiation-induced damage.

Stress evaluation of tubular structures using torsional guided wave mixing

  • Ching-Tai, Ng;Carman, Yeung;Tingyuan, Yin;Liujie, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.639-648
    • /
    • 2022
  • This study aims at numerically and experimentally investigating torsional guided wave mixing with weak material nonlinearity under acoustoelastic effect in tubular structures. The acoustoelastic effect on single central frequency guided wave propagation in structures has been well-established. However, the acoustoelastic on guided wave mixing has not been fully explored. This study employs a three-dimensional (3D) finite element (FE) model to simulate the effect of stress on guided wave mixing in tubular structures. The nonlinear strain energy function and theory of incremental deformation are implemented in the 3D FE model to simulate the guided wave mixing with weak material nonlinearity under acoustoelastic effect. Experiments are carried out to measure the nonlinear features, such as combinational harmonics and second harmonics in related to different levels of applied stresses. The experimental results are compared with the 3D FE simulation. The results show that the generation combinational harmonic at sum frequency provides valuable stress information for tubular structures, and also useful for damage diagnosis. The findings of this study provide physical insights into the effect of applied stresses on the combinational harmonic generation due to wave mixing. The results are important for applying the guided wave mixing for in-situ monitoring of structures, which are subjected to different levels of loadings under operational condition.

The Effect of Ligand's Spin-Orbit Coupling and the Intermixing of │3d 〉 and │4p 〉 Cu Atomic Orbitals on Zero-Field Splitting in the Tetragonally Distorted Tetrahedral $CuCl_4^{2-}\;Complex^\ast$ (Cu 3d 와 4p 궤도함수의 혼성과 리간드의 Spin-Orbit Coupling 이 Tetragonally 일그러진 $CuCl_4^{2-}$ 착물의 Zero-Field Splitting에 미치는 영향)

  • Lee, Wang No;Choe, U Seong;Baek, U Hyeon;Kim, Dong Hui;Choe, Chang Jin;Lee, Gi Gye
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.37-43
    • /
    • 1990
  • An effect of the spin-orbit coupling interaction of ligand orbitals and the intermixing │3d 〉and│4p > transition metal atomic orbitals on the ground state for a 3$d^9$ system in a strong crystal field of tetragonally distorted tetrahedral symmetry that belongs to the $D_{2d}$ point group has been investigated in this work, applying the degenerate perturbation theory. An LCAO-MO analysis in terms of the known energies of the d-d transitions for the tetragonally distorted $CuCl_4^{2-}$ ion in a single crystal of$Cs_2CuCl_4$shows that the covalent mixing of Cu 3d and ligand Cl 3p orbitals decreases dramatically with increasing Cu 4p contribution. The extent of effect on the energy level splitting for the ground state by the spin-orbit coupling interaction of ligand orbitals decreases significantly in orderTEX>$\Gamma_7(E)\;\to\;\Gamma_6(E)\; >\;\Gamma_7(B_2)\;\to\;\Gamma_6(E)\; >\;\Gamma_7(B_2)\;\to\;\Gamma_7(E)$.

  • PDF

Effects of design education program for young Children using 3D printer on creativity improvement (3D 프린터 활용 유아디자인교육 프로그램이 유아의 창의성 및 유용성 증진에 미치는 효과)

  • Jung, Ji-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.119-127
    • /
    • 2020
  • The purpose of this study is to verify the effect on the creativity and Usability of young Children by applying design education pro young Children gramfor using 3D printer to the kindergarten field and, through the results, to prepare a realistic way to increase the utilization of 3D printer media in infant classrooms. In order to achieve this research purpose, 38 infants aged 5 from G kindergarten located in metropolitan A are divided into each experimental group and comparative group, and from August 2017 to January 2018, data were collected through 15 experiments over a period of about 6 months. As a research tool, in the Korean version of Torrance's Creativity Test, an infant shape test and a usability test scale were used, and the data processing and analysis were conducted through technical statistical methods and covariance analysis. As a result of the study, the program using 3D printer had a statistically significant effect on promoting creativity and Usability of young Children, and in particular, it had a remarkable effect on the elaboration of creativity composition. Based on these results, discussions on the existing Nuri process, which mainly aims to cultivate creative talents, the possibility of connecting 3D printers more widely and the role of teachers were made.

A Study of the Effect of Intangible Asset on Firm Value : Focused on KOSDAQ-Listed Medium-Sized Companies (기업의 무형자산이 기업가치에 미치는 영향에 관한 연구 : 코스닥 상장 중견기업을 중심으로)

  • Yoon, Jeong-Hee;Seo, Inhee;Choi, Jeongil
    • Journal of Information Technology Services
    • /
    • v.15 no.3
    • /
    • pp.1-14
    • /
    • 2016
  • According to the growing importance of science and technology policy, investment in research and development (R&D) has been increased. In this context, a patent as one of outcome of firm's systematic R&D investment is the way to hold a dominant position in companies' technology competitiveness and also to protect technology right. This study attempts to find the effects of input resources and intellectual property production activity on company value. It conducted empirical analysis based on 238 KOSDAQ-listed and medium-sized firms. Using the previous research, this study configurated research variables about activity of patent production, company value, and input of resources. Through these variables, it aims to know the effect of input of resources and activity of patent production on company value. First, the result of regression analysis shows that R&D cost has the positive effect on a patent production and sales promotion cost positively affects on the registration of the trademark. Second, the output of regression analysis indicates that a patent has the positive effect on company value but a trademark has not. With regard to the input of resources, R&D cost has the influence on company value but sales promotion cost has not. This study attempts to find the effectiveness of company's intellectual property registration on its value and suggests a way that the systematic R&D investment contributes the growth of company value.

Diffusion Analysis of the High Temperature and Salinity Water by the 3-D Baroclinic Flow Model (3-D 밀도류모델을 이용한 고온${\cdot}$고염수의 확산해석)

  • Kim, Jong-In;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.3-13
    • /
    • 1999
  • The diffusion characteristics of the high temperature and salinity water discharged in Chinhae Bay under BMP(Barge-Mounted Plants) desalination processes were simulated to access environmental impact. The 3-D baroclinic flow model is formulated by integrating the basic equations with respect to each control volume and by transforming them into a finite difference form using the space-staggered grid system. With a 3-D baroclinic flow model, the tide-induced and density-induced current was computed and confirmed by comparing with observed data. From the results of numerical experiment, it is expected that the maximum diffusion lengths of the high temperature and salinity which increase $0.6^{circ}C$ and 0.2 after discharging are 1 km and 3.5km, respectively. It may be expected that the discharge has an effect on surrounding area of discharge, but not an effect on whole area of Chinhae Bay.

  • PDF

Study on 3D Numerical Analysis of Stack Effect Reduction in Stairwell of Building (건축물 계단에서의 연돌효과 저감방안에 대한 3차원 수치해석 연구)

  • Kim, Jung-Yup;Kim, Ji-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.152-157
    • /
    • 2015
  • Stack effect on high-rise building have negative effect on living environment, energy and life-safety aspect. Thus, it's necessary to find the measure to reduce the stack effect. As a result of field test on a 31-story building, a circulating type stack effect reduction technology was developed, which supplies air in the low stairs and discharges air in the high stairs. To evaluate the performance of this circulating type stack effect reduction technology on building stairs, a 3D numerical analysis was carried out by using Momentum Loss Model for analyzing leakage flow between compartments in a building. Consequently, numerical analysis proved that the stack effect on building stairs was reduced by a circulating type stack effect reduction technology.

Effect of Input Data Video Interval and Input Data Image Similarity on Learning Accuracy in 3D-CNN

  • Kim, Heeil;Chung, Yeongjee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.208-217
    • /
    • 2021
  • 3D-CNN is one of the deep learning techniques for learning time series data. However, these three-dimensional learning can generate many parameters, requiring high performance or having a significant impact on learning speed. We will use these 3D-CNNs to learn hand gesture and find the parameters that showed the highest accuracy, and then analyze how the accuracy of 3D-CNN varies through input data changes without any structural changes in 3D-CNN. First, choose the interval of the input data. This adjusts the ratio of the stop interval to the gesture interval. Secondly, the corresponding interframe mean value is obtained by measuring and normalizing the similarity of images through interclass 2D cross correlation analysis. This experiment demonstrates that changes in input data affect learning accuracy without structural changes in 3D-CNN. In this paper, we proposed two methods for changing input data. Experimental results show that input data can affect the accuracy of the model.

Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing (적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구)

  • Jin, Jae-Ho;Kwon, Da-in;Oh, Jae-Hwan;Kang, Do-Hyun;Kim, Kwanoh;Yoon, Jae-Sung;Yoo, Yeong-Eun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.