• Title/Summary/Keyword: 3D Converting

Search Result 220, Processing Time 0.025 seconds

Laser Processing for Manufacturing Styrofoam Pattern (주물용 스티로폼 목형 제작을 위한 레이저 가공 공정 개발)

  • 강경호;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1085-1088
    • /
    • 2001
  • The process of styrofoam pattern that has been used for material of press die pattern depends chiefly on handwork. Laser manufacturing system developed to increase precision and efficiency of process that is also able to convert the design easily. Applying the RP(rapid prototyping) concept reversely, the unnecessary part of section is vapored away by heat source of laser beam after converting 3-D CAD model into cross-sectional shape information. Laser beam is line-scanned in plane specimens to measure the depth and width of cut, surface roughness, cross-sectional shape as converting laser power, scanning speed, cutting gas pressure. With these basic data, plane surface, inclined surface, hole, outer contour trimming process is experimented and optimum condition are obtained. In plane and inclined surface experiments, 15W laser power and 50mm/s scanning speed make superior processing property and 30W, 10mm/s make processing efficiency increase in trimming process. With these results, simple patterns were manufactured and the possibility of applying laser manufacturing system to styrofoam pattern was convinced.

  • PDF

Pressure Analysis of the Plantar Musculoskeletal Fascia Using a Fine Finite-Element Model (인체 족부 근골격계 상세 유한요소모델링을 통한 족저압 해석)

  • Jeon, Seong-Mo;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1237-1242
    • /
    • 2011
  • The A detailed 3D finite-element analysis model of a human foot has been developed by converting CT scan images to 3D CAD models in order to analyze the distribution of plantar pressure. The 3D foot model includes all muscles, bones, and skin. On the basis of this model and the pressure distribution results, shoes for diabetes patients, which can make the plantar pressure distribution uniform, may be designed through finite-element contact analysis.

Isolation of Polyphenol from Green Tea by HPLC and Its Physiological Activities (HPLC에 의한 녹차의 polyphenol 화합물의 분리 및 polyphenol의 생리활성)

  • Woo, Hee-Seob;Choi, Hee-Jin;Han, Ho-Suk;Park, Jung-Hye;Son, Jun-Ho;An, Bong-Jeun;Son, Gyu-Mok;Choi, Cheong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1199-1203
    • /
    • 2003
  • Polyphenols were isolated from Korean green tea using Sephadex LH-20 and HPLC. The isolated polyphenols were procyanidin B-4, procyanidin B-2-3,3'-digallate, prodelphinidin C-2-3,3'-di-O-digallate, (+)-catechin-3-O-rhamnose, procyandin B-5, procyanidin B-7-3-0-gallate, gallate, epiafzelechin-$(4{\beta}{\rightarrow}8)$-epiafzelechin, procyanidin B-3-3-O-rhamnose, afzelechin-$(4{\alpha}{\rightarrow}8)$-catechin, prodelphinidin B-5-3,3'-di-O-digallate and (+)-taxifolin-3-O-D-xyloside. The inhibitory effects of prodelphinidin C-2-3,3'-di-O-gallate and procyanidin B-2-3,3'-digallate $(at\;100{\mu}M)$ on angiotensin.converting enzyme were 68.8 and 54.6%, respectively, while the inhibitory effects of prodelphinidin C-2-3,3'-di-O-gallated and procyanidin B-2-3,3'-digallate $(at\;100{\mu}m)$ on xanthine oxidase were 54.5 and 38.2%, respectively. Lastly, the inhibitory activities of prodelphinidin C-2-3,3'-di-O-gallate $(at\;100{\mu}m)$ on tyrosinase was 42.1%.

An Algorithim for Converting 2D Face Image into 3D Model (얼굴 2D 이미지의 3D 모델 변환 알고리즘)

  • Choi, Tae-Jun;Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.41-48
    • /
    • 2015
  • Recently, the spread of 3D printers has been increasing the demand for 3D models. However, the creation of 3D models should have a trained specialist using specialized softwares. This paper is about an algorithm to produce a 3D model from a single sheet of two-dimensional front face photograph, so that ordinary people can easily create 3D models. The background and the foreground are separated from a photo and predetermined constant number vertices are placed on the seperated foreground 2D image at a same interval. The arranged vertex location are extended in three dimensions by using the gray level of the pixel on the vertex and the characteristics of eyebrows and nose of the nomal human face. The separating method of the foreground and the background uses the edge information of the silhouette. The AdaBoost algorithm using the Haar-like feature is also employed to find the location of the eyes and nose. The 3D models obtained by using this algorithm are good enough to use for 3D printing even though some manual treatment might be required a little bit. The algorithm will be useful for providing 3D contents in conjunction with the spread of 3D printers.

Scan-to-Geometry Mapping Rule Definition for Building Plane Reverse engineering Automation (건축물 평면 형상 역설계 자동화를 위한 Scan-to-Geometry 맵핑 규칙 정의)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.21-28
    • /
    • 2019
  • Recently, many scan projects are gradually increasing for maintenance, construction. The scan data contains useful data, which can be generated in the target application from the facility, space. However, modeling the scan data required for the application requires a lot of cost. In example, the converting 3D point cloud obtained from scan data into 3D object is a time-consuming task, and the modeling task is still very manual. This research proposes Scan-to-Geometry Mapping Rule Definition (S2G-MD) which maps point cloud data to geometry for irregular building plane objects. The S2G-MD considers user use case variability. The method to define rules for mapping scan to geometry is proposed. This research supports the reverse engineering semi-automatic process for the building planar geometry from the user perspective.

Hint-based Reconstruction of Interacting Solids of Revolution from Orthographic Projections (2차원 도면에서 교차하는 회전체 형상의 복원)

  • Han S.H.;Lee H.M.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.392-401
    • /
    • 2005
  • 2D CAD is being replaced by 3D CAD to improve efficiency of product design and manufacturing. Therefore, converting legacy 2D drawings into 3D solid models is required. CSG based approaches construct solid models from orthographic views more efficiently than traditional B-rep based approaches. A major limitation of CSG based approaches has been the limited domain of objects that can be handled. This paper aims at extending the capabilities of CSG based approaches by proposing hint-based recognition of interacting solids of revolution which can handle interacting solids of revolution as well as isolated solids of revolution.

A web-based collaborative framework for facilitating decision making on a 3D design developing process

  • Nyamsuren, Purevdorj;Lee, Soo-Hong;Hwang, Hyun-Tae;Kim, Tae-Joo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.148-156
    • /
    • 2015
  • Increased competitive challenges are forcing companies to find better ways to bring their applications to market faster. Distributed development environments can help companies improve their time-to-market by enabling parallel activities. Although, such environments still have their limitations in real-time communication and real-time collaboration during the product development process. This paper describes a web-based collaborative framework which has been developed to support the decision making on a 3D design developing process. The paper describes 3D design file for the discussion that contains all relevant annotations on its surface and their visualization on the user interface for design changing. The framework includes a native CAD data converting module, 3D data based real-time communication module, revision control module for 3D data and some sub-modules such as data storage and data management. We also discuss some raised issues in the project and the steps underway to address them.

A Study on 2D/3D image Conversion Method using Create Depth Map (2D/3D 변환을 위한 깊이정보 생성기법에 관한 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1897-1903
    • /
    • 2011
  • This paper discusses a 2D/3D conversion of images using technologies like object extraction and depth-map creation. The general procedure for converting 2D images into a 3D image is extracting objects from 2D image, recognizing the distance of each points, generating the 3D image and correcting the image to generate with less noise. This paper proposes modified new methods creating a depth-map from 2D image and recognizing the distance of objects in it. Depth-map information which determines the distance of objects is the key data creating a 3D image from 2D images. To get more accurate depth-map data, noise filtering is applied to the optical flow. With the proposed method, better depth-map information is calculated and better 3D image is constructed.

A Design and Implementation of Worker Motion 3D Visualization Module Based on Human Sensor

  • Sejong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.109-114
    • /
    • 2024
  • In this paper, we design and implement a worker motion 3D visualization module based on human sensors. The three key modules that make up this system are Human Sensor Implementation, Data Set Creation, and Visualization. Human Sensor Implementation provides the functions of setting and installing the human sensor locations and collecting worker motion data through the human sensors. Data Set Creation offers functions for converting and storing motion data, creating near real-time worker motion data sets, and processing and managing sensor and motion data sets. Visualization provides functions for visualizing the worker's 3D model, evaluating motions, calculating loads, and managing large-scale data. In worker 3D model visualization, motion data sets (Skeleton & Position) are synchronized and mapped to the worker's 3D model, and the worker's 3D model motion animation is visualized by combining the worker's 3D model with analysis results. The human sensor-based worker motion 3D visualization module designed and implemented in this paper can be widely utilized as a foundational technology in the smart factory field in the future.

Production automation system for three-dimensional template pieces used to evaluate shell plate completeness

  • Son, Seunghyeok;Kim, Byeongseop;Ryu, Cheolho;Hwang, Inhyuck;Jung, ChangHwan;Shin, Jong-Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.116-128
    • /
    • 2020
  • In the shipbuilding industry, three-dimensional (3D) templates play a key role in the completeness evaluation of shell plates with a large curvature in the shell-plate fabrication process. Currently, the information of 3D templates from a ship computer-aided design system is limited; thus, manufacturers depend on their experience to produce the templates manually. This results in the inaccuracy of templates in addition to increased production time. Therefore, if the pieces of the 3D templates can be produced automatically with accurate information, the lead time of the fabrication process can be reduced. In this study, we define a new type of template piece and develop methods for extending a boundary template and converting manufacturing information into numerical control machine input. In addition, based on the results of the study, we propose a production automation system for 3D template pieces. This system is expected to reduce the lead time of the fabrication process.