• Title/Summary/Keyword: 3D Computer-Aided Design

Search Result 247, Processing Time 0.026 seconds

Production of Window Motor Assembly Parts in Automotive Body (자동차 전장에서 윈도우 모터 조립 부품의 생산)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.3 no.4
    • /
    • pp.29-34
    • /
    • 2012
  • Power window motor assembly including ECU system is important to doors of automobile. This study is done for own development instead of importing of power window motor assembly. This paper is written under five specific subjects. The first, making of prototype sample and analysis of mass-production problem using CAE, the second, design of mass-production mold(2D and 3D), the third, manufacturing of sample mold, the fourth, tryout and measuring of 3 dimensions, the fifth, data analysis and mold modify. In the among them, product sample and analysis of mass-production using CAE, design and manufacture of mass-production mold, and production of sample mold are successfully done. In the results, it is made clear that two cavity and one gate are proper to make a mold of power window motor assembly housing. Besides, it is acquired own technology for mass-production of power window motor.

Comparative study of volumetric change in water-stored and dry-stored complete denture base (공기중과 수중에서 보관한 총의치 의치상의 체적변화에 대한 비교연구)

  • Kim, Jinseon;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.18-26
    • /
    • 2021
  • Purpose: Generally, patients are noticed to store denture in water when removed from the mouth. However, few studies have reported the advantage of volumetric change in underwater storage over dry storage. To be a reference in defining the proper denture storage method, this study aims to evaluate the volumetric change and dimensional deformation in case of underwater and dry storage. Materials and methods: Definitive casts were scanned by a model scanner, and denture bases were designed with computer-aided design (CAD) software. Twelve denture bases (upper 6, lower 6) were printed with 3D printer. Printed denture bases were invested and flasked with heat-curing method. 6 upper and 6 lower dentures were divided into group A and B, and each group contains 3 upper and 3 lower dentures. Group A was stored dry at room temperature, group B was stored underwater. Group B was scanned at every 24 hours for 28 days and scanned data was saved as stereolithography (SLA) file. These SLA files were analyzed to measure the difference in volumetric change of a month and Kruskal-Wallis test were used for statistical analysis. Best-fit algorithm was used to overlap and 3-dimensional color-coded map was used to observe the changing pattern of impression surface. Results: No significant difference was found in volumetric changes regardless of the storage methods. In dry-stored denture base, significant changes were found in the palate of upper jaw and posterior lingual border of lower jaw in direction away from the underlying tissue, maxillary tuberosity of upper jaw and retromolar pad area of lower jaw in direction towards the underlying tissue. Conclusion: Storing the denture underwater shows less volumetric change of impression surface than storing in the dry air.

Customized Cranioplasty Implants Using Three-Dimensional Printers and Polymethyl-Methacrylate Casting

  • Kim, Bum-Joon;Hong, Ki-Sun;Park, Kyung-Jae;Park, Dong-Hyuk;Chung, Yong-Gu;Kang, Shin-Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.6
    • /
    • pp.541-546
    • /
    • 2012
  • Objective : The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. Methods : A total of 16 patients with large skull defects (>100 $cm^2$) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. Results : The median operation time was $184.36{\pm}26.07$ minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Conclusion : Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects.

Effect of surface treatment on shear bond strength of relining material and 3D-printed denture base

  • Park, Se-Jick;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.262-272
    • /
    • 2022
  • PURPOSE. This study aimed to analyze the shear bond strength between the 3D-printed denture base and the chairside relining material, according to the surface treatment. MATERIALS AND METHODS. Cylindrical specimens were prepared using DENTCA Denture Base II. The experimental groups were divided into 6 (n = 10): no surface treatment (C), Tokuyama Rebase II Normal adhesive (A), sandblasting (P), sandblasting and adhesive (PA), sandblasting and silane (PS), and the Rocatec system (PPS). After bonding the chairside relining material to the center of the specimens in a cylindrical shape, they were stored in distilled water for 24 hours. Shear bond strength was measured using a universal testing machine, and failure mode was analyzed with a scanning electron microscope. Shear bond strength values were analyzed using one-way analysis of variance, and Tukey's honest significant difference test was used for post-hoc analysis (P < .05). RESULTS. Group PPS exhibited significantly higher shear bond strength than all other groups. Groups P and PA displayed significantly higher bond strengths than the control group. There were no significant differences between groups PS and A compared to the control group. Regarding the failure mode, adhesive failure occurred primarily in groups C and A, and mixed failure mainly in groups P, PA, PS, and PPS. CONCLUSION. The shear bond strength between the 3D-printed denture base and the chairside relining material exhibited significant differences according to the surface treatment methods. It is believed that excellent adhesive strength will be obtained when the Rocatec system is applied to 3D-printed dentures in clinical practice.

Development of a Process Sequence Determination Technique by Fuzzy Set Theory for Electric Product with Piercing and Bending Operations (퍼지셋을 이용한 퍼어싱 및 굽힘공정을 갖는 전기제품의 공정순서 결정기법 개발)

  • Kim J.H.;Kim Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.137-146
    • /
    • 2005
  • This paper describes a research work to develop a computer-aided design for the product made by progressive working of bending and piercing. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of three main modules, which are input and shape treatment, flat pattern layout, strip layout modules. The system is designed by considering several factors, such as piercing and bending sequences by fuzzy set theory, complexities of blank geometry, punch profiles, and the availability of a press equipment. Strip layout drawing generated in the strip layout module is presented in 3-D graphic forms, including piercing and bending sequences with punch profiles divided into for external area. Results obtained using the modules enable the manufacturer for progressive working of electric products to be more efficient in this field.

A Study for Process Planning of Progressive Working by the using of Fuzzy Set Theory (Fuzzy set 이론을 이용한 프로그레시브 가공의 공정설계에 관한 연구)

  • Kim, Y. M.;Kim, J. H.;Kim, C.;Choi, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.735-739
    • /
    • 2001
  • This paper describes a research work of developing computer-aided design of a product with bending and piercing for progressive working. An approach to the system for progressive working os based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theorise, experimental results and the empirical knowledge of field experts. the system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of three main modules, which are input and shape treatment, flat pattern layout and strip layout modules. Strip layout of the system is designed by using fuzzy set theory. Process planning is determinated by fuzzy value according to several rules. Strip layout drawing generated in strip layout module is presented in 3-D graphic forms, including bending sequences and piercing processes with punch profiles divided into for external area. Results obtained using the modules enable the manufacturer for progressive working of electric products to be more efficient in this field.

  • PDF

Mechanical design of mounts for IGRINS focal plane array

  • Oh, Jae Sok;Park, Chan;Cha, Sang-Mok;Yuk, In-Soo;Park, Kwijong;Kim, Kang-Min;Chun, Moo-Young;Ko, Kyeongyeon;Oh, Heeyoung;Jeong, Ueejeong;Nah, Jakyuong;Lee, Hanshin;Pavel, Michael;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2014
  • IGRINS, the Immersion GRating INfrared Spectrometer, is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG focal plane array (FPA) detectors. The mechanical mounts for these detectors serves a critical function in the overall instrument design: Optically, they permit the only positional compensation in the otherwise "build to print" design. Thermally, they permit setting and control of the detector operating temperature independently of the cryostat bench. We present the design and fabrication of the mechanical mount as a single module. The detector mount includes the array housing, a housing for the SIDECAR ASIC, a field flattener lens holder, and a support base. The detector and ASIC housing will be kept at 65 K and the support base at 130 K. G10 supports thermally isolate the detector and ASIC housing from the support base. The field flattening lens holder attaches directly to the FPA array housing and holds the lens with a six-point kinematic mount. Fine adjustment features permit changes in axial position and in yaw and pitch angles. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the computer simulation, the designed detector mount meets the optical and thermal requirements very well.

  • PDF

Marginal and internal fit of 3D printed provisional crowns according to build directions

  • Ryu, Ji-Eun;Kim, Yu-Lee;Kong, Hyun-Jun;Chang, Hoon-Sang;Jung, Ji-Hye
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.225-232
    • /
    • 2020
  • PURPOSE. This study aimed to fabricate provisional crowns at varying build directions using the digital light processing (DLP)-based 3D printing and evaluate the marginal and internal fit of the provisional crowns using the silicone replica technique (SRT). MATERIALS AND METHODS. The prepared resin tooth was scanned and a single crown was designed using computer-aided design (CAD) software. Provisional crowns were printed using a DLP-based 3D printer at 6 directions (120°, 135°, 150°, 180°, 210°, 225°) with 10 crowns in each direction. In total, sixty crowns were printed. To measure the marginal and internal fit, a silicone replica was fabricated and the thickness of the silicone impression material was measured using a digital microscope. Sixteen reference points were set and divided into the following 4 groups: marginal gap (MG), cervical gap (CG), axial gap (AG), and occlusal gap (OG). The measurements were statistically analyzed using one-way ANOVA and Dunnett T3. RESULTS. MG, CG, and OG were significantly different by build angle groups (P<.05). The MG and CG were significantly larger in the 120° group than in other groups. OG was the smallest in the 150° and 180° and the largest in the 120° and 135° groups. CONCLUSION. The marginal and internal fit of the 3D-printed provisional crowns can vary depending on the build angle and the best fit was achieved with build angles of 150° and 180°.

A musculotendon model for supporting design and analysis of tendon transfers in the hand

  • Yoon, I.M.
    • Proceedings of the ESK Conference
    • /
    • 1992.10a
    • /
    • pp.54-62
    • /
    • 1992
  • This work has been directed at studying and developing a prototype Computer Aided Design(CAD) tool to be used for planning tendon paths in hand reconstructive surgery. The application of CAD to rehabilitative surgery of the hand is a new field of endeavor. There are currently no existing systems designed to assist the orthopedic surgeon in planning these complex peocedures. Additionally, orthopedic surgeons are not trained in mechanics, kinematics, math modeling, or the use of computers. It was also our intent to study the mechanisms and the efficacy of the application of CAD techniques to this important aspect of hand surgery. The following advances are reported here: Interactive 3D tendon path definition tools., Software to calculate tendon excursion from an arbitrary tendon path crossing any number of joints., A model to interactively compute and display the foirces in muscle and tendon., A workstation environment to help surgeons evaluate the consequences of a simulated tendon transfer operation when a tendon is lengthened, rerouted, or reattached in a mew location., It also has been one of the primary concerns in this work that an interactive graphical surgical workstation must present a natural, user-friendly environment to the orthopedic durgeon user. The surgical workstation must ultimately aid the surgeon in helping his patient or in doing his work more efficiently or more reliably.

  • PDF

A Study on Automatic Calculation of Earth-volume Using 3D Model of B-Rep Solid Structure (B-Rep Solid 구조의 3차원 모델을 이용한 토공량 자동 산정에 관한 연구)

  • Kim, Jong Nam;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.403-412
    • /
    • 2022
  • As the 4th industrial revolution is in full swing and next-generation ICT(Information & Communications Technology) convergence technology is being developed, various smart construction technologies are being rapidly introduced in the construction field to respond to technological changes. In particular, since the earth-volume calculation process for site design accounts for a large part of the design cost at the construction site, related researches are being actively conducted to improve the efficiency of the process and accurately calculate the earth-volume. The purpose of this study is to present a method for quickly constructing the topography of a construction site in 3D and efficiently calculating earth-volume using the results. For this purpose, the construction site was constructed as a 3D realistic model using large-scale aerial photos obtained from UAV(Unmanned Aerial Vehicle). At this time, since the constructed 3D realistic model has a surface model structure in which volume calculation is impossible, the structure was converted into a 3D solid model to enable volume calculation. And we devised a methodology to calculate earth-volume based on CAD(Computer-Aided Design and Drafting) using the converted solid model. Automatically calculating earth-volume from the solid model by applying the method. As a result, It was possible to confirm a relative deviation of 1.52% from the calculated earth-volume from the existing survey results. In addition, as a result of comparative analysis of the process time required for each method, it was confirmed that the time required is reduced of 60%. The technique presented in this study is expected to be utilized as a technology for smart construction management, such as periodic site monitoring throughout the entire construction process, as well as cost reduction for earth-volume calculation.