• 제목/요약/키워드: 3D Cell Printing

검색결과 50건 처리시간 0.024초

3D 프린팅 공정을 이용한 고체 산화물 연료전지 연구 동향 (Recent Activities of Solid Oxide Fuel Cell Research in the 3D Printing Processes)

  • 주바이르 마사우드;무하마드 주바이르 칸;암자드 후세인;하피즈 아흐마드 이시팍;송락현;이승복;조동우;임탁형
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.11-40
    • /
    • 2021
  • Solid oxide fuel cell (SOFC) has received significant attention recently because of its potential for the clean and efficient power generation. The current manufacturing processes for the SOFC components are somehow complex and expensive, therefore, new and innovative techniques are necessary to provide a great deal of cell performance and fabricability. Three-dimensional (3D) printing processes have the potential to provide a solution to all these problems. This study reviews the literature for manufacturing the SOFC components using 3D printing processes. The technical aspects for fabrication of SOFC components, 3D printing processes optimization and material characterizations are discussed. Comparison of the SOFC components fabricated by 3D printing to those manufactured by conventional ceramic processes is highlighted. Further advancements in the 3D printing of the SOFC components can be a step closer to the cost reduction and commercialization of this technology.

Three-dimensional Bio-printing Technique: Trend and Potential for High Volume Implantable Tissue Generation

  • Duong, Van-Thuy;Kim, Jong Pal;Kim, Kwangsoo;Ko, Hyoungho;Hwang, Chang Ho;Koo, Kyo-in
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권5호
    • /
    • pp.188-207
    • /
    • 2018
  • Recently, three-dimensional (3D) printing of biological tissues and organ has become an attractive interdisciplinary research topic that combines a broad range of fields including engineering, biomaterials science, cell biology, physics, and medicine. The 3D bioprinting can be used to produce complex tissue engineering scaffolds based on computer designs obtained from patient-specific anatomical data. It is a powerful tool for building structures by printing cells together with matrix materials and biochemical factors in spatially predefined positions within confined 3D structures. In the field of the 3D bioprinting, three major categories of the 3D bioprinting include the stereolithography-based, inkjet-based, and dispensing-based bioprinting. Some of them have made significant process. Each technique has its own advantages and limitations. Compared with non-biological printing, the 3D bioprinting should consider additional complexities: biocompatibility, degradability of printing materials, cell types, cell growth, cell viability, and cell proliferation factors. Numerous 3D bioprinting technologies have been proposed, and some of them have been making great progress in printing several tissues including multilayered skin, cartilaginous structures, bone, vasculature even heart and liver. This review summarizes basic principles and key aspects of some frequently utilized printing technologies, and introduces current challenges, and prospects in the 3D bioprinting.

Clinical Application of Three-Dimensional Printing Technology in Craniofacial Plastic Surgery

  • Choi, Jong Woo;Kim, Namkug
    • Archives of Plastic Surgery
    • /
    • 제42권3호
    • /
    • pp.267-277
    • /
    • 2015
  • Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models.

3D 프린팅 기술의 조직공학 및 재생의학 분야 응용 (3D Printing Technology and Its Application on Tissue Engineering and Regenerative Medicine)

  • 이준희;박수아;김완두
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제1권1호
    • /
    • pp.21-26
    • /
    • 2013
  • 본 논문에서는 최근 미래 신산업 혁명을 주도할 유망기술로 각광 받고 있는 3D 프린팅 기술과 이를 이용한 조직공학 및 재생의학 분야의 응용 기술을 살펴보았다. 한국기계연구원에서는 3D 프린팅 기술을 바탕으로 독자적인 3D 바이오프린팅 장비를 설계 및 제작하였으며, 개발된 3D 바이오프린팅 장비를 이용하여 다양한 분야에 적용이 가능한 3D 형상의 조직공학용 스캐폴드를 제작하였다. 또한 세포와 생체재료를 3D로 직접 프린팅 할 수 있는 세포 프린팅 기술을 개발하였으며, 이는 인공장기 개발분야의 원천 기술로 조직공학 및 재생의학 분야에 3D 프린팅 기술이 활용될 수 있는 기반을 확립하였다.

3 차원 프린팅 기술로 제작된 조직공학용 3 차원 구조체 (Three-Dimensional Printed 3D Structure for Tissue Engineering)

  • 박정훈;장진아;조동우
    • 대한기계학회논문집B
    • /
    • 제38권10호
    • /
    • pp.817-829
    • /
    • 2014
  • 조직공학 분야에서의 3 차원 구조체는 세포의 성장과 분화를 유도하기 위한 미세 환경을 제공하고, 재생하고자 하는 조직의 형태를 유지할 수 있도록 지탱해 주는 역할을 수행한다. 현재까지 다양한 생체재료 및 이의 가공 기법들이 이러한 3 차원 구조체를 제작하는데 적용되고 있다. 특히, 3 차원 프린팅 기술은 다양한 재료를 이용하여 원하는 외부 형상과 내부 구조를 제작할 수 있기 때문에 오늘날 조직공학 분야에 많이 이용되고 있고, 이 기술을 통해 새로운 조직공학적 접근 방법도 시도되고 있다. 본 논문에서는, 현재 조직공학 분야에 적용되고 있는 3 차원 프린팅 기술과, 이를 통해 제작된 기능성 인공지지체 및 세포 프린팅 구조체, 그리고 이의 다양한 조직공학적 적용에 대해서 서술하고자 한다.

3차원 프린팅 기술을 이용한 연성 구조물 제작 (A Review of the Fabrication of Soft Structures with Three-dimensional Printing Technology)

  • 장진아;조동우
    • 한국기계가공학회지
    • /
    • 제14권6호
    • /
    • pp.142-148
    • /
    • 2015
  • 3D printing technology is a promising technique for fabricating complex 3D architectures based on the CAD/CAM system, and it has been extensively investigated to manufacture structures in the fields of mechanical engineering, space technology, automobiles, and biomedical and electrical applications. Recent advances in the 3D printing of soft structures have received attention for the application of the construction of flexible sensors of soft robotics or the recreation of tissue/organ-specific microenvironments. In this review paper, we would like to focus on delivering state-of-the-art fabrication of soft structures with 3D printing technology and its various applications.

3D 바이오 프린팅 기술 현황과 응용 (Status and Prospect of 3D Bio-Printing Technology)

  • 김성호;여기백;박민규;박종순;기미란;백승필
    • KSBB Journal
    • /
    • 제30권6호
    • /
    • pp.268-274
    • /
    • 2015
  • 3D printing technology has been used in various fields such as materials science, manufacturing, education, and medical field. A number of research are underway to improve the 3D printing technology. Recently, the use of 3D printing technology for fabricating an artificial tissue, organ and bone through the laminating of cell and biocompatible material has been introduced and this could make the conformity with the desired shape or pattern for producing human entire organs for transplantation. This special printing technique is known as "3D Bio-Printing", which has potential in biomedical application including patient-customized organ out-put. In this paper, we describe the current 3D bio-printing technology, and bio-materials used in it and present it's practical applications.

바이오화학공학에서 3D 바이오프린팅 기술 (3D Bioprinting Technology in Biochemical Engineering)

  • 엄태윤
    • Korean Chemical Engineering Research
    • /
    • 제54권3호
    • /
    • pp.285-292
    • /
    • 2016
  • 삼차원 프린팅(3D printing) 기술은 공학, 제조업, 교육, 예술, 그리고 바이오의학 같은 다양한 분야에 활용되고 있는 혁신적 기술이다. 프린팅 기술, 재료/생화학물질을 포함한 최근 기술의 진보는 생체적합성 물질, 세포, 지지체 성분의 3D 프린팅으로 복잡한 3D 기능성 조직과 장기를 제작할 수 있는 가능성을 보여주고 있다. 3D 바이오프린팅 기술은 신약 개발, 독성 연구를 위한 조직 모델의 제작에도 활용되고 있다. 3D 바이오프린팅 기술은 공학, 생체재료과학, 세포생물학, 생화학, 물리, 의학 같은 분야의 통섭이 필요한 연구 분야이다.

탄소나노튜브 복합소재 전왜 특성과 3D 프린팅을 활용한 로드셀 개발 연구 (A Study on Load Cell Development by means of a Nano-Carbon Piezo-resistive Composite and 3D printing)

  • 강인필;정관영;최백규;김성용;오광원;김병탁;백운경
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.97-102
    • /
    • 2020
  • This paper presents the basic research for the design and fabrication of a 3D-printed load cell made of NCPC (nano-carbon piezo-resistive composite). We designed a structure that can resonate at a low frequency range of about 5-6 Hz with ANSYS using sensitivity analysis and a response surface method. The design was verified by fabricating the device with a low-quality commercial 3D printer and ABS filament. We conducted a feasibility test for a commercial sensor using 1000 cyclic load tests at 0.3 Hz in a material testing system. A manufacturing process for the 3D printer filament based on the NCPC was also developed using the nano-composite process.