본 논문에서는 화소간의 상관관계를 이용한 CCD/CMOS 이미지 센서용 효율적인 색 보간 기법을 제안한다. 최근 각광받고 있는 CCD/CMOS 이미지 센서는 컬러 필터 배열(Color Filter Array)을 사용하기 때문에, 각 화소는 컬러 영상을 만들기 위한 3가지 색 채널 중 한 가지 채널만 갖고 있게 된다. 따라서 컬러 영상을 만들기 위해서는 색 보간 구조가 필요하다. 최근 제안되는 색 보간 기법은 보간된 영상의 품질 향상에만 주력하고 있는데 반해, 본 논문에서는 낮은 복잡도를 갖으면서 잘못된 색을 최소화하기 위한 방법을 제안한다. 제안된 색 보간 기법에서는 인접한 화소간의 상관관계를 이용하여, 현재 화소의 방향성을 결정할 때 이웃 화소의 방향성 정보를 이용하였다. 기존의 방향성을 고려한 색 보간 기법에 제안된 기법을 적용한 결과, 알고리즘의 종류에 따라 PSNR이 $0.09{\sim}0.47dB$ 향상되었고, 대부분의 잘못된 색(False color)을 최소화함으로써 색 보간된 컬러영상의 품질이 향상되었다. 제안된 색 보간 기법은 Verilog HDL 및 FPGA를 이용하여 실시간으로 구현 검증되었다. 0.25um CMOS 표준 셀 라이브러리를 이용하여 합성하였을 때, 총 게이트 수는 12K개였으며 5개의 라인 메모리가 사용되었다.
본 논문은 차량의 내부 및 외부 정보를 통합하여 운전자의 인지 상태를 측정하고, 안전운전을 보조하여 주는시스템을 제안한다. 구현된 시스템은 운전자의 시선 정보와 외부 영상을 분석하여 얻은 주변정보를 mutual information기반으로 통합하여 구현되며, 차량의 앞부분과 내부 운전자를 검출하는 2개의 카메라를 이용한다. 외부 카메라에서 정보를 얻기 위해 선택적 집중모델을 기반으로 하는 게슈탈트법칙을 제안하고, 이를 기반으로 구현된 saliency map (SM) 모델은 신호등과 같은 중요한 외부 자극을 두드러지게 표현한다. 내부 카메라에서는 얼굴의 특징정보를 이용하여 운전자의 주의가 집중되는 외부 응시 정보를 파악하고 이를 통해 운전자가 응시하고 있는 영역을 검출한다. 이를 위해서 우리는 실시간으로 운전자의 얼굴특징을 검출하는 알고리즘을 사용한다. 운전자의 얼굴을 검출하기 위하여 modified census transform (MCT) 기반의 Adaboost 알고리즘을 사용하였으며, POSIT (POS with ITerations)알고리즘을 통해 3차원 공간에서 머리의 방향과 운전자 응시 정보를 측정하였다. 실험결과를 통하여 제안한 시스템이 실시간으로 운전자의 응시하고 있는 영역과, 신호등과 같은 운전에 도움이 되는 정보를 파악하는데 도움이 되었음을 확인할 수 있으며, 이러한 시스템이 운전보조 시스템에 효과적으로 적용될 것으로 판단된다.
요즘 들어, 3차원 콘텐츠의 수요는 지속적으로 증가하고 있다. 3차원 콘텐츠의 품질은 해당 장면의 깊이 정보에 큰 영향을 받기 때문에 정확한 깊이 정보를 얻는 것이 매우 중요하다. 카메라와 객체 사이의 깊이 정보는 적외선 센서를 이용한 계산을 통해 직접 얻을 수 있다. 최근 들어, KINECT 카메라와 같이 카메라와 물체 사이의 거리를 적외선이나 광신호를 이용하여 직접 측정하는 Time-of-flight (ToF) 기술을 사용하는 깊이 측정 방법이 널리 사용되고 있다. 이러한 방법은 카메라와 객체 사이의 깊이 정보를 실시간으로 획득할 수 있다는 장점을 갖지만, 획득된 깊이맵에 잡음이 발생하고, 깊이맵의 해상도가 낮다는 단점을 갖는다. 최근 들어, 이런 문제를 해결하기 위해서 양방향 결합 업샘플링 방법 (JBU) 이나 잡음 제거 업샘플링 방법 (NAFDU) 과 같은 필터 기반의 방법이 제안되었다. 그러나 이러한 필터 기반의 업샘플링 방법은 업샘플링된 깊이맵에 색상영상의 질감이 복사되는 문제가 발생한다. 이 논문에서는 이러한 문제점을 해결하기 위해 고차 정규화항을 이용하여 에너지 함수를 만들고, 이를 최적화하여 깊이맵을 업샘플링 한다. 또한, 색상과 깊이맵의 경계 정보를 고려한 경계 가중치항을 추가하여 질감 복사 문제를 해결한다. 실험 결과, 제안하는 깊이맵 업샘플링 방법이 기존의 방법에 비해 깊이 정보의 품질은 유지하면서, 질감 복사 문제를 효과적으로 해결할 수 있음을 확인했다.
An amphibious inspection robot system (hereafter AIROS) is being developed to visually inspect the in-containment refueling storage water tank (hereafter IRWST) strainer in APR1400 instead of a human diver. Four IRWST strainers are located in the IRWST, which is filled with boric acid water. Each strainer has 108 sub-assembly strainer fin modules that should be inspected with the VT-3 method according to Reg. guide 1.82 and the operation manual. AIROS has 6 thrusters for submarine voyage and 4 legs for walking on the top of the strainer. An inverse kinematic algorithm was implemented in the robot controller for exact walking on the top of the IRWST strainer. The IRWST strainer has several top cross braces that are extruded on the top of the strainer, which can be obstacles of walking on the strainer, to maintain the frame of the strainer. Therefore, a robot leg should arrive at the position beside the top cross brace. For this reason, we used an image processing technique to find the top cross brace in the sole camera image. The sole camera image is processed to find the existence of the top cross brace using the cross edge detection algorithm in real time. A 5-DOF robot arm that has multiple camera modules for simultaneous inspection of both sides can penetrate narrow gaps. For intuitive presentation of inspection results and for management of inspection data, inspection images are stored in the control PC with camera angles and positions to synthesize and merge the images. The synthesized images are then mapped in a 3D CAD model of the IRWST strainer with the location information. An IRWST strainer mock-up was fabricated to teach the robot arm scanning and gaiting. It is important to arrive at the designated position for inserting the robot arm into all of the gaps. Exact position control without anchor under the water is not easy. Therefore, we designed the multi leg robot for the role of anchoring and positioning. Quadruped robot design of installing sole cameras was a new approach for the exact and stable position control on the IRWST strainer, unlike a traditional robot for underwater facility inspection. The developed robot will be practically used to enhance the efficiency and reliability of the inspection of nuclear power plant components.
Objective: The purpose of this study was to investigate the difference in muscle strength, kinematics, and kinetics between injured and non-injured sides of the leg after Achilles Tendon Rupture surgery during walking and running. Method: The subjects (n=11; age = 30.63 ± 5.69 yrs; height = 172.00 ± 4.47 cm; mass = 77.00 ± 11.34 kg; time lapse from surgery = 29.81 ± 10.27 months) who experienced Achilles Tendon Rupture (ATR) surgery participated in this study. The walking and running trials were collected using infrared cameras (Oqus 300, Qualisys, Sweden, 100 Hz) on instrumented treadmill (Bertec, U.S.A., 1,000 Hz) and analyzed by using QTM (Qualisys Track Manager Ver. 2.15; Qualisys, U.S.A). The measured data were processed using Visual 3D (C-motion Inc., U.S.A.). The cutoff frequencies were set as 6 Hz and 12 Hz for walking and running kinematics respectively, while 100 Hz was used for force plate data. Results: In ATR group, muscle strength there were no difference between affected and unaffected sides (p> .05). In kinematic analysis, subjects showed greater ROM of knee joint flexion-extension in affected side compared to that of unaffected side during walking while smaller ROM of ankle dorsi-plantar and peak knee flexion were observed during running (p< .05). In kinetic analysis, subjects showed lower knee extension moment (running at 2.2 m/s) and positive ankle plantar-flexion power (running at 2.2 m/s, 3.3 m/s) in affected side compared to that of unaffected side (p< .05). This lower positive ankle joint power during a propulsive phase of running is related to slower ankle joint velocity in affected side of the subjects (p< .05). Conclusion: This study aimed to investigate the functional evaluation of the individuals after Achilles tendon rupture surgery through biomechanical analysis during walking and running trials. Based on the findings, greater reduction in dynamic joint function (i.e. lower positive ankle joint power) was found in the affected side of the leg compared to the unaffected side during running while there were no meaningful differences in ankle muscle strength and walking biomechanics. Therefore, before returning to daily life and sports activities, biomechanical analysis using more dynamic movements such as running and jumping trials followed by current clinical evaluations would be helpful in preventing Achilles tendon re-rupture or secondary injury.
The purpose of this study was to compare the differences in kinematic variables and grip forces among professionals(PG), amateurs(AG), and novice group(NG) during golf putting. The participants consisted of 3 groups based on their playing ability: 8 professional golfers (handicap<5), 8 amateurs (handicap<18) and 8 novice. Each subject attempted 2.1m putts from the hole. 3D motion analysis system(Motion analysis Corp., USA) with 6 high speed cameras and grip force measurement system(Kim et al., 2007) were used to acquired kinematic and force data, respectively. To compare differences among groups, joint angles of upper limbs, trajectory and smoothness by jerk cost function(JC) of putter head and grip forces were used in this study. Results showed that there were significant differences among groups in most of variables such as joint angles, trajectory & smoothness of putter head, and distribution of grip force in both hands. In brief, we confirmed that putting stroke in PG was more accurate and smooth than that in other groups, especially NG, due to their well-controlled upper limbs and keeping grip forces constant in both hands. It can be concluded that due to skilled levels, fundamental differences of putting movement could be identified and these differences might be helpful for improving one's putting skills.
본 논문은 첨단운전자지원시스템(Advanced Driver Assist System, ADAS) 및 자율주행자동차 등에 영상 정보를 제공하는 자동차용 열상카메라를 개발하고 그 영상의 디테일을 향상하기 위한 개선된 기법을 제안한다. 열상카메라는 온도 측정과 야간 영상 확보 등을 목적으로 의료, 산업, 군수 등 다양한 분야에서 활용되고 있다. 스마트자동차에서는 야간 영상 확보를 위하여 적용되고 있다. 첨단운전자지원시스템 및 자율주행자동차 등의 영상 센서로 활용되기 위해서는 객체인식이 가능한 수준의 영상 해상도 및 디테일이 요구된다. 본 논문에서는 자동차에 적용 가능한 $640{\times}480$ 해상도의 열상카메라를 개발하고 영상의 디테일을 향상하기 위한 BDE(Block-Range Detail Enhancement) 기법을 적용한다. 다양한 주행 환경에서 얻어지는 영상 디테일을 향상하기 위하여 대상 픽셀과 주변 8개의 픽셀 간의 Block-Range 값을 계산하여 5단계로 구분하고 각기 다른 Factor를 가감하도록 함으로써 활용도가 높은 영상을 얻을 수 있도록 한다. 개선된 기법은 130mK의 온도 차이까지 구분함으로써 영상의 어두운 부분도 상대적으로 세밀하게 구분하며, 영상의 밝은 부분과 어두운 부분 모두에서 고른 디테일 향상을 보여준다. 개발된 열상카메라와 디테일 향상 기법을 실차에 적용하고 시험하여 제안된 기법의 개선된 결과를 제시한다.
Objective: This study aimed to compare biomechanical data between elite and beginner cyclists during cycle pedaling by performing a comparative analysis and to provide quantitative data for both pedaling performance enhancement and injury prevention. Methods: The subjects of this study included 5 elite cyclists (age: $18{\pm}0years$, body mass: $64.8{\pm}9.52kg$, height: $173.0{\pm}4.80cm$) and 5 amateur cyclists (age: $20{\pm}0years$, mass: $66.6{\pm}2.36kg$, height: $175.6{\pm}1.95cm$). The subjects pedaled on a stationary bicycle mounted on rollers of the same gear (front: 50 T and rear: 17 T = 2.94) and cadence of 90. The saddle height was adjusted to fit the body of each subject, and all the subjects wore shoes with cleats. In order to obtain kinematic data, 4 cameras (GR-HD1KR, JVC, Japan) were installed and set at 60 frames/sec. An electromyography (EMG) system (Telemyo 2400T, Noraxon, USA) was used to measure muscle activation. Eight sets of data from both the left and right lower extremities were obtained from 4 muscles (vastus medialis oblique [VMO], vastus lateralis oblique [VLO], and semitendinosus [Semitend], and lateral gastrocnemius [Gastro]) bilaterally by using a sampling frequency of 1,500 Hz. Five sets of events ($0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, and $360^{\circ}$) and 4 phases (P1, P2, P3, and P4) were set up for the data analysis. Imaging data were analyzed for kinematic factors by using the Kwon3D XP computer software (Visol, Korea). MyoResearch XP Master Edition (Noraxon) was used for filtering and processing EMG signals. Results: The angular velocity at $360^{\circ}$ from the feet was higher in the amateur cyclists, but accelerations at $90^{\circ}$ and $180^{\circ}$ were higher in the elite cyclists. The amateur cyclists had greater joint angles at $270^{\circ}$ from the ankle and wider knee joint distance at $0^{\circ}$, $180^{\circ}$, and $360^{\circ}$ than the elite cyclists. The EMG measurements showed significant differences between P2 and P4 from both the right VLO and Semitend. Conclusion: This study showed that lower body movements appeared to be different according to the level of cycle pedaling experience. This finding may be used to improve pedaling performance and prevent injuries among cyclists.
본 연구는 정상시를 가진 정상인을 대상으로 입체시 부족을 유발하여 장애물 보행 시 발생될 것으로 생각되는 하지관절의 운동 변화에 대한 운동학적 분석과 지면반력의 변화를 고찰하는 것이다. 본 연구의 대상자는 입체시 테스트를 거쳐 통과한 18명이 연구에 참여하였다(age: 22.1±2.7 years, height: 176.8±4.4 cm, weight: 67.6±5.8 kg). 3차원 동작분석 시스템과 지면반력기를 이용하여 분석한 결과는 다음과 같다. 보행속도는 장애물 보행 시 느리게 나타났다. 고관절 각변위는 대부분 보행구간에서 장애물 보행 시 굴곡이 크게 나타났다. 무릎관절 각변위는 모든 보행구간에서 장애물 보행 시 굴곡이 크게 일어났고, TO와 FC2에서 입체시 감소의 영향으로 굴곡이 크게 나타났다. 발목관절 각 변위는 FC2에서 장애물 보행 시 굴곡이 크게 나타났다. 몸통기울기는 MSt, TO, MSw에서 장애물 보행 시 신전이 크게 나타났다. 지면반력은 Fx 값(내외측힘)에서 차이가 나타나지 않았지만, Fy 값(전후힘)에서 좌우발 모두 장애물 보행 시 전방 최대힘(추진력)이 크게 나타났고, 후방 최대힘(제동력)은 오른발은 입체시부족 보행 시 크게 나타났으며, 왼발은 장애물 보행 시 크게 나타났다. Fz 값(수직힘)은 최대힘-1과 최대힘-2에서 좌우발 모두 장애물 보행 시 최대 힘이 크게 나타났고, 계곡힘에서 오른발은 입체시부족 보행이 정상시 보행보다 작은힘이 나타났다.
It was to study a following research of "A Kinematic Analysis of Air-rolling-breakfall in Judo". The purpose of this study was to analyze the Center of Gravity(COG) variables when performing Air-rolling-breakfall motion, while passing forward over(PFO) to the vertical-hurdles(2m height, take off board 1m height) in judo. Subjects were four males of Y. University squad, who were trainees of the demonstration exhibition team, representatives of national level judoists and were filmed by four 5-VHS 16mm video cameras(60field/sec.) through the three dimensional film analysis methods.COG variable were anterior-posterior directional COG and linear velocity of COG, vertical directional COG and linear velocity of COG. The data collections of this study were digitized by KWON3D program computed The data were standardized using cubic spline interpolation based by calculating the mean values and the standard deviation calculated for each variables. When performing the Air-rolling-breakfall, from the data analysis and discussions, the conclusions were as follows : 1. Anterior-posterior directional COG(APD-COG) when performing Air-rolling-breakfall motion, while PFO over to the vertical-hurdles(2m height) in judo. The range of APD-COG by forward was $0.31{\sim}0.41m$ in take-off position(event 1), $1.20{\sim}1.33m$ in the air-top position(event 2), $2.12{\sim}2.30m$ in the touch-down position(event 3), gradually and $2.14{\sim}2.32m$ in safety breakfall position(event 4), respectively. 2 The linear velocity of APD-COG was $1.03{\sim}2.14m/sec$. in take-off position(event 1), $1.97{\sim}2.22m/sec$. gradually in the air-top position(event 2), $1.05{\sim}1.32m/sec$. in the touch-down position (event 3), gradual decrease and $0.91{\sim}1.23m/sec$. in the safety breakfall position(event 4), respectively. 3. The vertical directional COG(VD-COG) when performing Air-rolling-breakfall motion, while PFO to the vertical-hurdles(2m height) in judo. The range of VD-COG toward upward from mat was $1.35{\sim}1.46m$ in take-off position(event 1), the highest $2.07{\sim}2.23m$ in the air-top position(event 2), and after rapid decrease $0.3{\sim}0.58m$ in the touch-down position(event 3), gradual decrease $0.22{\sim}0.50m$ in safety breakfall position(event 4), respectively. 4. The linear velocity of VlJ.COG was $1.60{\sim}1.87m/sec$. in take-off position(event 1), $0.03{\sim}0.08m/sec$. gradually in the air-top position(event 2), $-4.37{\sim}\;-4.76m/sec$. gradual decrease in the touch-down position(event 3), gradual decrease and -4.40${\sim}\;-4.77m/sec$. in safety breakfall position(event 4), respectively. When performing Air-rolling-breakfall showed parabolic movement from take-off position to air-top position, and after showed vertical fall movement from air-top position to safety breakfall. In conclusion, Ukemi(breakfall) is safety fall method Therefore, actions need for performing safety fall movement, that decrease and minimize shock and impact during Air-rolling-breakfall from take-off board action to air-top position must be maximize of angular momentum, and after must be minimize in touch-down position and safety breakfall position.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.