• Title/Summary/Keyword: 3D CT

Search Result 1,098, Processing Time 0.026 seconds

Quantitative Evaluation of Concrete Damage by X-ray CT Methods (마이크로 포커스 X-ray CT를 이용한 콘크리트 손상균열의 정량적 평가)

  • Jung, Jahe
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.455-463
    • /
    • 2018
  • This study developed a method to quantitatively measure the size of cracks in concrete using X-ray CT images. We prepared samples with a diameter of 50 mm and a length of 100 mm by coring cracked concrete block that was obtained by chipping. We used a micro-focus X-ray CT, then applied the 3DMA method (3 Dimensional Medial axis Analysis) to the 3D CT images to find effective parameters for damage assessment. Finally, we quantitatively assessed the damage based on sample locations, using the damage assessment parameter. Results clearly show that the area near the chipping surface was damaged to a depth of 3 cm. Furthermore, X-ray methods can be used to evaluate the porosity index, burn number, and medial axis, which are used to estimate the damage to the area near the chipping surface.

Effects of Dietary Ca Level and Hormones on Bone Density of Mouse (식이 Ca 수준과 호르몬 투여가 생쥐가 골밀도에 미치는 영향)

  • 정차권
    • Journal of Nutrition and Health
    • /
    • v.29 no.9
    • /
    • pp.943-949
    • /
    • 1996
  • Bone mineral density depends largely on the status of dietary minerals such as Ca, P, Mg, and F and proteins, physical activities, parathyroid hormone(PTH), calcitonin(CT), and vitamin D. The decrease of bone density often results in bone fractures and osteoporosis which is prevalent among postmenopausal women. This study was intended to examine the role of parathyroid hormone, calcitonin and cholecaliferol in bone density of mice that were fed different dual photon energy beams. We have measured three major parts of the bone : whole body, head and femur. The results are summarized as follows : 1) Bone mineral density (BMD) was more increased by feeding high Ca diet compared to that of the low Ca diet. 2) Both PTH and Vit D3 enhanced BMD in all of the different Ca levels. 3) When the dietary Ca was deequate CT showed a synergistic effect with PTH in boosting bone density, while CT+Vit D3 showed a negative effect. 4) CT tended to inhibit the effect of increasing bone density by PTH and Vit D3 in medium and low Ca groups. 5) The effect of increasing bone density by PTH in the head of mouse increased when dietary Ca was lower : The increment of bone density by PTH in high, medium, and low Ca was 3%, 8%, 19%, respectively. 6) Femur bone density was affected significantly by dietary Ca levels than hormones. The above observations indicate that bone mineral density can be improved by high dietary Ca and hormone injections including PTH, CT and cholecalciferol, and thus proper dietary and hormonal treatment may be used in preventing bone fractures and osteoporosis.

  • PDF

Microvascular Contrast Image in Portal Veins of Rat using Micro-CT (마이크로 CT를 이용한 BALB/C(흰쥐) 간문맥의 미세혈관 조영 영상)

  • Lee, Sang-Ho;Lim, Cheong-Hwan;Jung, Hong-Rayng;Han, Beom-Hee;Mo, Eun-Hee;Chai, Kyu-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.259-266
    • /
    • 2010
  • The study focuses on the value of Micro CT, a high resolution X-ray imaging device, by using it on rats to observe the overall portal vein image of the liver and the microvasculature of each lobes, visualize the 4 segmental lobes and acquire 3D image of the microvasculature through the reconstruction of sectional image data. Less of the damage to liver of the 5 mice, the device was able to separate the liver into 4 segmental lobes and displayed the 4 portal vein microvasculature in 2D. By using the 3D MIP technique, observation of the whole portal vein system microvasculature in 3D image was made possible along with each of the portal vein segment's branches until the 6th branch. Measured the size of 6branch, the average was measured at 1branch : $0.51mm{\pm}0.08$, 2 branch : $0.32mm{\pm}0.12$, 3 branch : $0.23mm{\pm}0.11$, 4 branch : $0.19mm{\pm}0.08$, 5 branch : $0.13mm{\pm}0.06$, 6 branch : $70.5{\mu}m{\pm}14.1$. The 3D image and the images of the microvasculatures in the result of study proved that the Micro-CT can be considered many useful device in obtaining high resolution images.

The Comparison Evaluation of SUV Using Different CT Devices in PET/CT Scans (PET 검사에서 CT 장비의 차이에 따른 PET/CT의 SUV 비교 평가)

  • Kim, Woo Hyun;Go, Hyeon Soo;Lee, Jeong Eun;Kim, Ho Sung;Ryu, Jae Kwang;Jung, Woo Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • Purpose: Among different PET/CT devices which are composed of same PET model but different CT models, SUV, usually used for quantitative evaluation, was measured to assess the accuracy of follow up scans in different PET/CT and confirm that interequipment compatibility is useful in arranging the PET/CT exam appointment. Materials and Methods: Using ACR PET Phantom, PET NEMA IEC Body Phantom, SNM Chest Phantom and Ge-68 cylinder Phantom, $SUV_{mean}$ and $SUV_{max}$ was measured by 3 different models of PET/CT (Discovery 690, Discovery 690Elite and Discovery 710, GE) made in same company. ANOVA was used to evaluate the significant difference in the result. Results: In the result, the average of $SUV_{max}$ was D690 (25 mm-1.82, 16 mm-1.75, 12 mm-1.73, 8 mm-1.44), D690E (25 mm-1.76, 16 mm-1.92, 12 mm-1.78, 8 mm-1.55) and D710 (25 mm-1.84, 16 mm-1.89, 12 mm-1.77, 8 mm-1.61) in ACR Phantom, D690 (25 mm-2.26, 16 mm-2.25, 12 mm-1.92, 8 mm-1.85), D690E (25 mm-2.45, 16 mm-2.25, 12 mm-2.05 8 mm-1.91) and D710(25 mm-2.49, 16 mm-2.20, 1 2mm-2.30, 8 mm-2.05) in PET NEMA IEC Body Phantom, D690-1.04, D690E-1.10 and D710-1.09 in SNM Chest Phantom and D690-0.81, D690E-0.81, D710-0.84 in Ge-68 cylinder Phantom. The differences between average SUV of 4 phantoms were $SUV_{mean}$-1.87%, $SUV_{max}$-2.15%. And also as a result of ANOVA analysis, there was no significant difference statistically. Conclusion: If different models of PET/CT have same specification of PET system, there was no significant difference in $SUV_{mean}$ and $SUV_{max}$ even though they have different CT system. And also differences of $SUV_{mean}$ and $SUV_{max}$ in phantom images were under 5% which many manufacturers recommend. Therefore, follow up scan will be possible using different PET/CT if it has same specification of PET system with the previous PET/CT. This information will enable the accurate comparative analysis when conducting follow up scans and be helpful to schedule PET/CT exam more effectively.

  • PDF

Evaluation of Perfusion and Image Quality Changes by Reconstruction Methods in 13N-Ammonia Myocardial Perfusion PET/CT (13N-암모니아 심근관류 PET/CT 검사 시 영상 재구성 방법에 따른 관류량 변화와 영상 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.69-75
    • /
    • 2014
  • Purpose: The aim of this study was to evaluate changes of quantitative and semi-quantitative myocardial perfusion indices and image quality by image reconstruction methods in $^{13}N$-ammonia ($^{13}N-NH_3$) myocardial perfusion PET/CT. Materials and Methods: Data of 14 (8 men, 6 women) patients underwent rest and adenosine stress $^{13}N-NH_3$ PET/CT (Biograph TruePoint 40 with TrueV, Siemens) were collected. Listmode scans were acquired for 10 minutes by injecting 370MBq of $^{13}N-NH_3$. Dynamic and static reconstruction was performed by use of FBP, iterative2D (2D), iterative3D (3D) and iterative TrueX (TrueX) algorithm. Coronary flow reserve (CFR) of dynamic reconstruction data, extent(%) and total perfusion deficit (TPD) (%) measured in sum of 4-10 minutes scan were evaluated by comparing with 2D method which was recommended by vendor. The image quality of each reconstructed data was compared and evaluated by five nuclear medicine physicians through a blind test. Results: CFR were lower in TrueX 18.68% (P=0.0002), FBP 4.35% (P=0.1243) and higher in 3D 7.91% (P<0.0001). As semi-quantitative values, extent and TPD of stress were higher in 3D 3.07%p (P=0.001), 2.36%p (P=0.0002), FBP 1.93%p (P=0.4275), 1.57%p (P=0.4595), TrueX 5.43%p (P=0.0003), 3.93%p (P<0.0001). Extent and TPD of rest were lower in FBP 0.86%p (P=0.1953), 0.57%p (P=0.2053) and higher in 3D 3.21%p (P=0.0006), 2.57%p (P=0.0001) and TrueX 5.36%p (P<0.0001), 4.36%p (P<0.0001). Based on the results of the blind test for image resolution and noise from the snapshot, 3D obtained the highest score, followed by 2D, TrueX and FBP. Conclusion: We found that quantitative and semi-quantitative myocardial perfusion values could be under- or over-estimated according to the reconstruction algorithm in $^{13}N-NH_3$ PET/CT. Therefore, proper dynamic and static reconstruction method should be established to provide accurate myocardial perfusion value.

  • PDF

Development of 4D CT Data Generation Program based on CAD Models through the Convergence of Biomedical Engineering (CAD 모델 기반의 4D CT 데이터 제작 의용공학 융합 프로그램 개발)

  • Seo, Jeong Min;Han, Min Cheol;Lee, Hyun Su;Lee, Se Hyung;Kim, Chan Hyeong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.131-137
    • /
    • 2017
  • In the present study, we developed the 4D CT data generation program from CAD-based models. To evaluate the developed program, a CAD-based respiratory motion phantom was designed using CAD software, and converted into 4D CT dataset, which include 10 phases of 3D CTs. The generated 4D CT dataset was evaluated its effectiveness and accuracy through the implementation in radiation therapy planning system (RTPS). Consequently, the results show that the generated 4D CT dataset can be successfully implemented in RTPS, and targets in all phases of 4D CT dataset were moved well according to the user parameters (10 mm) with its stationarily volume (8.8 cc). The developed program, unlike real 4D CT scanner, due to the its ability to make a gold-standard dataset without any artifacts constructed by modality's movements, we believe that this program will be used when the motion effect is important, such as 4D radiation treatment planning and 4D radiation imaging.

Three-Dimensional Image Registration using a Locally Weighted-3D Distance Map (지역적 가중치 거리맵을 이용한 3차원 영상 정합)

  • Lee, Ho;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.939-948
    • /
    • 2004
  • In this paper. we Propose a robust and fast image registration technique for motion correction in brain CT-CT angiography obtained from same patient to be taken at different time. First, the feature points of two images are respectively extracted by 3D edge detection technique, and they are converted to locally weighted 3D distance map in reference image. Second, we search the optimal location whore the cross-correlation of two edges is maximized while floating image is transformed rigidly to reference image. This optimal location is determined when the maximum value of cross-correlation does't change any more and iterates over constant number. Finally, two images are registered at optimal location by transforming floating image. In the experiment, we evaluate an accuracy and robustness using artificial image and give a visual inspection using clinical brain CT-CT angiography dataset. Our proposed method shows that two images can be registered at optimal location without converging at local maximum location robustly and rapidly by using locally weighted 3D distance map, even though we use a few number of feature points in those images.

3-D Inverse Radon Transform by Use of Tree-Structured Filter Bank

  • Morikawa, Yoshitaka;Murakami, Junichi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.184-187
    • /
    • 2002
  • Two-dimensional (2-D) X-ray computerized tomography (CT) equipments are widely used in industrial and medical fields, and nowadays studies on reconstruction algorithm for 3-D cone-beam acquisition systems are active for better utilization. The authors recent-By have proposed a fast reconstruction aigorithm using tree-structured filter bank for 2-D C1, and shown the algorithm is applicable to an approximate reconstruction of 3-D CT. For exact 3-D CT reconstruction, however, we have to backproject 1-D signal into 3-D space. This paper proposes a fast implementation method for this back-projection by use of tree-structured filter bank. and shows the proposed method works approximately 700 times faster than the direct one with almost same reconstruction image quality.

  • PDF

Extravasation Injury of Contrast Media in the Neck and Thorax During MDCT Scanning with 3D Image Reformation Findings (CT검사에서 조영제의 혈관외유출에 의한 목 및 흉부 손상의 3차원 재구성 영상)

  • Kweon, Dae-Cheol;Jang, Keun-Jo;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.281-287
    • /
    • 2007
  • Contrast media may cause tissue injury by extravasation during intravenous automated injection during CT examination. Here, we present a study in which contrast media extravasation was detected and localized in the neck and thorax by three-dimensional(3D) CT data reformation. The CT studies of the extavasation site were performed using a 3D software program with four different display techniques axial, multi planar reformation(MPR), maximum intensity projection(MIP), and volume rendering displays are currently available for reconstructing MDCT data. 3D image reconstructions provide accurate views of high-resolution imaging. This paper introduces extravasation with the MDCT and 3D reformation findings of contrast media extravasation in neck ant thorax. The followed injection of the external jugular vein into an existing intravenous catheter and a large volume of extravasation was demonstrated on by 3D MDCT.

  • PDF

Development of CT/MRI based GUI Software for 3D Printer Application (3차원 프린터 응용을 위한 CT/MRI-영상 기반 GUI소프트웨어 개발)

  • Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.451-456
    • /
    • 2018
  • During last a decade, there has been increased demand for 3D-printed medical devices with significant improvement of 3D-Printer (also known as Additive. Manufacturing AM), which depend upon human body features. Especially, demand for personalized medical material is highly growing with being super-aged society. In this study, 3D-reconstructed 3D mesh image from CT/MRI-images is demonstrated to analyse each patients' personalized anatomical features by using in house, then to be able to manufacture its counterpart. Developed software is distributed free of charge, letting various researcher identify biological feature for each areas.