• Title/Summary/Keyword: 3D CNN

Search Result 146, Processing Time 0.027 seconds

A Distributed Real-time 3D Pose Estimation Framework based on Asynchronous Multiviews

  • Taemin, Hwang;Jieun, Kim;Minjoon, Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.559-575
    • /
    • 2023
  • 3D human pose estimation is widely applied in various fields, including action recognition, sports analysis, and human-computer interaction. 3D human pose estimation has achieved significant progress with the introduction of convolutional neural network (CNN). Recently, several researches have proposed the use of multiview approaches to avoid occlusions in single-view approaches. However, as the number of cameras increases, a 3D pose estimation system relying on a CNN may lack in computational resources. In addition, when a single host system uses multiple cameras, the data transition speed becomes inadequate owing to bandwidth limitations. To address this problem, we propose a distributed real-time 3D pose estimation framework based on asynchronous multiple cameras. The proposed framework comprises a central server and multiple edge devices. Each multiple-edge device estimates a 2D human pose from its view and sendsit to the central server. Subsequently, the central server synchronizes the received 2D human pose data based on the timestamps. Finally, the central server reconstructs a 3D human pose using geometrical triangulation. We demonstrate that the proposed framework increases the percentage of detected joints and successfully estimates 3D human poses in real-time.

Enhancing Alzheimer's Disease Classification using 3D Convolutional Neural Network and Multilayer Perceptron Model with Attention Network

  • Enoch A. Frimpong;Zhiguang Qin;Regina E. Turkson;Bernard M. Cobbinah;Edward Y. Baagyere;Edwin K. Tenagyei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2924-2944
    • /
    • 2023
  • Alzheimer's disease (AD) is a neurological condition that is recognized as one of the primary causes of memory loss. AD currently has no cure. Therefore, the need to develop an efficient model with high precision for timely detection of the disease is very essential. When AD is detected early, treatment would be most likely successful. The most often utilized indicators for AD identification are the Mini-mental state examination (MMSE), and the clinical dementia. However, the use of these indicators as ground truth marking could be imprecise for AD detection. Researchers have proposed several computer-aided frameworks and lately, the supervised model is mostly used. In this study, we propose a novel 3D Convolutional Neural Network Multilayer Perceptron (3D CNN-MLP) based model for AD classification. The model uses Attention Mechanism to automatically extract relevant features from Magnetic Resonance Images (MRI) to generate probability maps which serves as input for the MLP classifier. Three MRI scan categories were considered, thus AD dementia patients, Mild Cognitive Impairment patients (MCI), and Normal Control (NC) or healthy patients. The performance of the model is assessed by comparing basic CNN, VGG16, DenseNet models, and other state of the art works. The models were adjusted to fit the 3D images before the comparison was done. Our model exhibited excellent classification performance, with an accuracy of 91.27% for AD and NC, 80.85% for MCI and NC, and 87.34% for AD and MCI.

Deep Neural Network Architecture for Video - based Facial Expression Recognition (동영상 기반 감정인식을 위한 DNN 구조)

  • Lee, Min Kyu;Choi, Jun Ho;Song, Byung Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.35-37
    • /
    • 2019
  • 최근 딥 러닝의 급격한 발전과 함께 얼굴표정인식 기술이 상당한 진보를 이루었다. 그러나 기존 얼굴표정인식 기법들은 제한된 환경에서 취득한 인위적인 동영상에 대해 주로 개발되었기 때문에 실제 wild 한 환경에서 취득한 동영상에 대해 강인하게 동작하지 않을 수 있다. 이런 문제를 해결하기 위해 3D CNN, 2D CNN 그리고 RNN 의 새로운 결합으로 이루어진 Deep neural network 구조를 제안한다. 제안 네트워크는 주어진 동영상으로부터 두 가지 서로 다른 CNN 을 통해서 영상 내 공간적 정보뿐만 아니라 시간적 정보를 담고 있는 특징 벡터를 추출할 수 있다. 그 다음, RNN 이 시간 도메인 학습을 수행할 뿐만 아니라 상기 네트워크들에서 추출된 특징 벡터들을 융합한다. 상기 기술들이 유기적으로 연동하는 제안된 네트워크는 대표적인 wild 한 공인 데이터세트인 AFEW 로 실험한 결과 49.6%의 정확도로 종래 기법 대비 향상된 성능을 보인다.

  • PDF

Automatic Volumetric Brain Tumor Segmentation using Convolutional Neural Networks

  • Yavorskyi, Vladyslav;Sull, Sanghoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.432-435
    • /
    • 2019
  • Convolutional Neural Networks (CNNs) have recently been gaining popularity in the medical image analysis field because of their image segmentation capabilities. In this paper, we present a CNN that performs automated brain tumor segmentations of sparsely annotated 3D Magnetic Resonance Imaging (MRI) scans. Our CNN is based on 3D U-net architecture, and it includes separate Dilated and Depth-wise Convolutions. It is fully-trained on the BraTS 2018 data set, and it produces more accurate results even when compared to the winners of the BraTS 2017 competition despite having a significantly smaller amount of parameters.

  • PDF

Prediction of pathological complete response in rectal cancer using 3D tumor PET image (3차원 종양 PET 영상을 이용한 직장암 치료반응 예측)

  • Jinyu Yang;Kangsan Kim;Ui-sup Shin;Sang-Keun Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.63-65
    • /
    • 2023
  • 본 논문에서는 FDG-PET 영상을 사용하는 딥러닝 네트워크를 이용하여 직장암 환자의 치료 후 완치를 예측하는 연구를 수행하였다. 직장암은 흔한 악성 종양 중 하나이지만 병리학적으로 완전하게 치료되는 가능성이 매우 낮아, 치료 후의 반응을 예측하고 적절한 치료 방법을 선택하는 것이 중요하다. 따라서 본 연구에서는 FDG-PET 영상에 합성곱 신경망(CNN)모델을 활용하여 딥러닝 네트워크를 구축하고 직장암 환자의 치료반응을 예측하는 연구를 진행하였다. 116명의 직장암 환자의 FDG-PET 영상을 획득하였다. 대상군은 2cm 이상의 종양 크기를 가지는 환자를 대상으로 하였으며 치료 후 완치된 환자는 21명이었다. FDG-PET 영상은 전신 영역과 종양 영역으로 나누어 평가하였다. 딥러닝 네트워크는 2차원 및 3차원 영상입력에 대한 CNN 모델로 구성되었다. 학습된 CNN 모델을 사용하여 직장암의 치료 후 완치를 예측하는 성능을 평가하였다. 학습 결과에서 평균 정확도와 정밀도는 각각 0.854와 0.905로 나타났으며, 모든 CNN 모델과 영상 영역에 따른 성능을 보였다. 테스트 결과에서는 3차원 CNN 모델과 종양 영역만을 이용한 네트워크에서 정확도가 높게 평가됨을 확인하였다. 본 연구에서는 CNN 모델의 입력 영상에 따른 차이와 영상 영역에 따른 딥러닝 네트워크의 성능을 평가하였으며 딥러닝 네트워크 모델을 통해 직장암 치료반응을 예측하고 적절한 치료 방향 결정에 도움이 될 것으로 기대한다.

  • PDF

Development of Gas Type Identification Deep-learning Model through Multimodal Method (멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발)

  • Seo Hee Ahn;Gyeong Yeong Kim;Dong Ju Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.525-534
    • /
    • 2023
  • Gas leak detection system is a key to minimize the loss of life due to the explosiveness and toxicity of gas. Most of the leak detection systems detect by gas sensors or thermal imaging cameras. To improve the performance of gas leak detection system using single-modal methods, the paper propose multimodal approach to gas sensor data and thermal camera data in developing a gas type identification model. MultimodalGasData, a multimodal open-dataset, is used to compare the performance of the four models developed through multimodal approach to gas sensors and thermal cameras with existing models. As a result, 1D CNN and GasNet models show the highest performance of 96.3% and 96.4%. The performance of the combined early fusion model of 1D CNN and GasNet reached 99.3%, 3.3% higher than the existing model. We hoped that further damage caused by gas leaks can be minimized through the gas leak detection system proposed in the study.

Fusion System of Time-of-Flight Sensor and Stereo Cameras Considering Single Photon Avalanche Diode and Convolutional Neural Network (SPAD과 CNN의 특성을 반영한 ToF 센서와 스테레오 카메라 융합 시스템)

  • Kim, Dong Yeop;Lee, Jae Min;Jun, Sewoong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.230-236
    • /
    • 2018
  • 3D depth perception has played an important role in robotics, and many sensory methods have also proposed for it. As a photodetector for 3D sensing, single photon avalanche diode (SPAD) is suggested due to sensitivity and accuracy. We have researched for applying a SPAD chip in our fusion system of time-of-fight (ToF) sensor and stereo camera. Our goal is to upsample of SPAD resolution using RGB stereo camera. Currently, we have 64 x 32 resolution SPAD ToF Sensor, even though there are higher resolution depth sensors such as Kinect V2 and Cube-Eye. This may be a weak point of our system, however we exploit this gap using a transition of idea. A convolution neural network (CNN) is designed to upsample our low resolution depth map using the data of the higher resolution depth as label data. Then, the upsampled depth data using CNN and stereo camera depth data are fused using semi-global matching (SGM) algorithm. We proposed simplified fusion method created for the embedded system.

Synthesizing Image and Automated Annotation Tool for CNN based Under Water Object Detection (강건한 CNN기반 수중 물체 인식을 위한 이미지 합성과 자동화된 Annotation Tool)

  • Jeon, MyungHwan;Lee, Yeongjun;Shin, Young-Sik;Jang, Hyesu;Yeu, Taekyeong;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.139-149
    • /
    • 2019
  • In this paper, we present auto-annotation tool and synthetic dataset using 3D CAD model for deep learning based object detection. To be used as training data for deep learning methods, class, segmentation, bounding-box, contour, and pose annotations of the object are needed. We propose an automated annotation tool and synthetic image generation. Our resulting synthetic dataset reflects occlusion between objects and applicable for both underwater and in-air environments. To verify our synthetic dataset, we use MASK R-CNN as a state-of-the-art method among object detection model using deep learning. For experiment, we make the experimental environment reflecting the actual underwater environment. We show that object detection model trained via our dataset show significantly accurate results and robustness for the underwater environment. Lastly, we verify that our synthetic dataset is suitable for deep learning model for the underwater environments.

Manufacture artificial intelligence education kit using Jetson Nano and 3D printer (Jetson Nano와 3D프린터를 이용한 인공지능 교육용 키트 제작)

  • SeongJu Park;NamHo Kim
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.40-48
    • /
    • 2022
  • In this paper, an educational kit that can be used in AI education was developed to solve the difficulties of AI education. Through this, object detection and person detection in computer vision using CNN and OpenCV to learn practical-oriented experiences from theory-centered and user image recognition (Your Own) that learns and recognizes specific objects Image Recognition), user object classification (Segmentation) and segmentation (Classification Datasets), IoT hardware control that attacks the learned target, and Jetson Nano GPIO, an AI board, are developed and utilized to develop and utilize textbooks that help effective AI learning made it possible.

A Study on Shape Warpage Defect Detecion Model of Scaffold Using Deep Learning Based CNN (CNN 기반 딥러닝을 이용한 인공지지체의 외형 변형 불량 검출 모델에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.99-103
    • /
    • 2021
  • Warpage defect detecting of scaffold is very important in biosensor production. Because warpaged scaffold cause problem in cell culture. Currently, there is no detection equipment to warpaged scaffold. In this paper, we produced detection model for shape warpage detection using deep learning based CNN. We confirmed the shape of the scaffold that is widely used in cell culture. We produced scaffold specimens, which are widely used in biosensor fabrications. Then, the scaffold specimens were photographed to collect image data necessary for model manufacturing. We produced the detecting model of scaffold warpage defect using Densenet among CNN models. We evaluated the accuracy of the defect detection model with mAP, which evaluates the detection accuracy of deep learning. As a result of model evaluating, it was confirmed that the defect detection accuracy of the scaffold was more than 95%.