• Title/Summary/Keyword: 3D CG

Search Result 194, Processing Time 0.019 seconds

Dominant-species Variation of Soil Microbes by Temperate Change (온도변화에 기인한 토양미생물 우점종의 변화에 관한 연구)

  • Park, Kap-Joo;Lee, Byeong-Chol;Lee, Jae-Seok;Park, Chan-Sun;Cho, Myung-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.52-60
    • /
    • 2011
  • Today, the weather is changing continually, due to the progress of global warming. As the weather changes, the habitats of different organisms will change as well. It cannot be predicted whether or not the weather will change with each passing day. In particular, the biological distribution of the areas climate change affects constitutes a major factor in determining the natural state of indigenous plants; additionally, plants are constantly exposed to rhizospheric microorganisms, which are bound to be sensitive to these changes. Interest has grown in the relationship between plants and rhizopheric microorganisms. As a result of this interest we elected to research and experiment further. We researched the dominant changes that occur between plants and rhizospheric organisms due to global warming. First, we used temperature as a variable. We employed four different temperatures and four different sites: room temperature ($27^{\circ}C$), $+2^{\circ}C$, $+4^{\circ}C$, and $+6^{\circ}C$. The four different sites we used were populated by the following species: Pinus deniflora, Pinus koraiensis, Quercus acutissima, and Alnus japonica. We counted colonies of these plants and divided them. Then, using 16S rRNA analysis we identified the microorganisms. In conclusion, we identified the following genera, which were as follows: 10 species of Bacillus, 2 Enterobacter species, 4 Pseudomonas species, 1 Arthrobacter species, 1 Chryseobacterium species, and 1 Rhodococcus species. Among these genera, the dominant species in Pinus deniflora was discovered in the same genus, but a different species dominated at $33^{\circ}C$. Additionally, that of Pinus koraiensis changed in both genus and species which changed into the Chryseobacrterium genus from the Bacilus genus at $33^{\circ}C$.

Phylogenetic Analysis based on Metallothionein Gene Sequence of an Indigenous Species Pisidium (Neopisidium) coreanum in Korea (한국 고유종 Pisidium (Neopisidium) coreanum (산골조개) 의 metallothionein 유전자를 기초로 한 분자계통 분류학적 연구)

  • Baek, Moon-Ki;Lee, Jun-Seo;Kang, Se-Won;Lee, Jae-Bong;Kang, Hyun-Jung;Jo, Yong-Hun;Noh, Mi-Young;Han, Yeon-Soo;Choi, Sang-Haeng;Chae, Sung-Hwa;Park, Hong-Seog;Lee, Jun-Sang;Lee, Yong-Seok
    • The Korean Journal of Malacology
    • /
    • v.25 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • Pisidium (Neopisidium) coreanum is a freshwater snail and lives in spring water near mountain areas. Interestingly, this snail has been traditionally regarded as medicinal food, and thus has been used as folk remedies for healing broken bones. Recently, alpha classification on Pisidium (Neopisidium) coreanum through redescription has been conducted. However, not much attention has been made in beta classification. In this study, we performed the beta classification based on metallothionein (MT) genes found from various organisms. To this end, the complete cDNA sequences were obtained from the Expressed Sequence Tag (EST) sequencing project of Pisidium (Neopisidium) coreanum. The coding region (315 bp) encoded an amino acid sequence of 105 residues. The combined results from BLAST analyses, multiple sequence alignment and molecular phylogenetic study of Pc-MT gene indicate that Pisidium (Neopisidium) coreanum has similarity to freshwater bivalve such as Dreissena polymorpha (zebra mussel), Unio tumidus (swollen river mussel) and Crassostrea ariakensis (suminoe oyster).

  • PDF

Study on the Behaviour of Mixtures of Herbicides in Transplanted Lowland Rice Field (논잡초방제용(雜草防除用) 제초제(除草劑)의 혼합효과(混合效果)에 관한 연구(硏究))

  • Kim, S.C.;Choi, C.D.;Lee, S.K.
    • Korean Journal of Weed Science
    • /
    • v.3 no.1
    • /
    • pp.69-74
    • /
    • 1983
  • The behaviour of mixtures of herbicides was determined to obtain the basic informations about effective herbicide use, enhancing herbicidal efficacy and reducing the chemical cost. Fourteen herbicides with 91 mixed combinations were evaluated by Limpel et al method at the Echinochloa crus galli Beauv-Monochuria vaginalis Presl.-Scirpus hotarui Ohwi (importance values of these weeds were 63%, 16% and 10%, respectively) community type. Thirty eight mixed combinations showed the antagonistic response. Among these 14 mixed combinations including chlormethoxynil + naproanilide mixture were greater than 11% in antagonistic effect. On the other hand, 40 mixed combinations including chlormethoxynil + SW751 mixture showed additive response (${\pm}2%$). For synergistic response, 13 mixed combinations were belonged to this group. Particularly, 3 mixed combinations, chlormethoxynil + butachlor, chlormethoxynil + bifenox and nitrofen + ACN/MCPB/nitrofen mixtures were greater than 11% in synergistic effects. The mixture of thiobencarb + oxyfluorfen was analyzed by isobole technique. This mixture showed the synergistic response and the interaction index was approximately 2. The most optimum mixtur for inducing 90%n weed suppression was 0.012 kg ai/ha for oxyfluorfen and 0.45 kg ai/ha for thiobencarb.

  • PDF

Effects of Fertilization Time and Culture Medium of Pig Oocytes Matured In Vitro by liquid Boar Sperm Stored at $4^{\circ}C$ (체외성숙된 돼지난포란을 $4^{\circ}C$ 보존 액상정액으로 체외수정시 수정시간과 배양배지의 영향)

  • Park, C. S.;Y. J. Yi;Kim, M. Y.;Y. J. Chang;Lee, S. H.;D. I. Jin
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.3
    • /
    • pp.215-223
    • /
    • 2003
  • This study was to investigate the effects of fertilization time and culture medium of pig oocytes matured in-vitro by liquid boar sperm. The sperm rich fraction (30∼60 ml) was slowly cooled to room temperature (20∼23$^{\circ}C$) by 2 h after collection. Semen was transferred into 15 ml tubes, centrifuged at room temperature for 10 min 800 ${\times}$ g, and the supernatant solution was poured off. The concentrated sperm was resuspended with 5 ml of the LEN diluent to provide 1.0${\times}$10$^{9}$ sperm/ml at room temperature. The resuspended semen was cooled in a refrigerator to 4$^{\circ}C$. The medium used for oocyte maturation was TCM-199 supplemented with 26.19 mM sodium bicarbonate, 0.9 mM sodium pyruvate, 10 $\mu\textrm{g}$/ml insulin, 2 $\mu\textrm{g}$/ml vitamin B$_{12}$ , 25 mM HEPES, 10 $\mu\textrm{g}$/ml bovine apotransferrin, 150 $\mu$M cysteamine, 10 IU/ml PMSG, 10 IU/ml hCG, 10 ng/ml EGF, 0.4% BSA, 75 $\mu\textrm{g}$/ml sodium penicillin G, 50 $\mu\textrm{g}$/ml streptomycin sulfate and 10% pFF. After about 22 h of culture, oocytes were cultured without cysteamine and hormones for 22 h at 38.5$^{\circ}C$, 5% $CO_2$ in air. Oocytes were inseminated with liquid boar sperm stored at 4$^{\circ}C$ for 2 days after collection. Oocytes were coincubated for 1, 3, 6 and 9 h in 500 ${mu}ell$ mTBM fertilization media with 1.0${\times}$10$^{6}$ sperm/ml concentration, respectively. Thereafter, oocytes were transferred into 500 ${mu}ell$ NCSU-23, HEPES buffered NCSU-23, PZM-3 and PZM-4 culture media, respectively, for further culture of 6, 48 and 144 h. The rates of sperm penetration and male pronuclear formation were higher in the fertilization times for 6 and 9 h than in those for 1 and 3 h. The rates of cleaved oocytes were higher in the fertilization times for 6 and 9 h (85.0 and 84.6%) than in those for 1 and 3 h (61.1 and 76.8%). The percentage of blastocyst formation from the cleaved oocytes was highest in the fertilization time for 6 h (33.6%) than in that for 1, 3 and 9 h (11.4, 23.0 and 29.6%). Mean cell numbers per blastocyst were 32.9, 27.6, 26.3 and 24.4 in the fertilization times for 6, 9, 3 and 1 h, respectively. The rate of blastocyst from the cleaved oocytes and the number of cells per blastocyst were higher in HEPES buffered NCSU-23 culture medium than in NCSU-23, PZM-3 and PZM-4 culture media. In conclusion, we found out that liquid boar sperm stored at 4$^{\circ}C$ could be used for in-vitro fertilization of pig oocytes matured in-vitro. Also, we recommend the coincubation time of 6 h in 500 ${mu}ell$ TBM fertilization medium with 1${\times}$10$^{6}$ sperm/ml concentration and the HEPES buffered NCSU-23 culture medium for in-vitro fertilization of pig oocytes matured in-vitro.