• Title/Summary/Keyword: 3D CAD Data

Search Result 453, Processing Time 0.027 seconds

Fabrication of complete denture using digital technology in patient with mandibular deviation: a case report (하악 편위 환자에서 디지털 방식을 이용한 총의치 제작 증례)

  • Lee, Eunsu;Park, Juyoung;Park, Chan;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sangwon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.1
    • /
    • pp.34-41
    • /
    • 2022
  • Recently, digital technology and computer-aided design/computer-aided manufacturing (CAD/CAM) environment have changed the clinician treatment method in the fabrication of dentures. The denture manufacturing method with CAD/CAM technology simplifies the treatment and laboratory process to reduce the occurrence of errors and provides clinical efficiency and convenience. In this case, complete dentures were fabricated using stereolithography (SLA)-based 3D printing in patient with mandibular deviation. Recording base were produced in a digital model obtained with an intraoral scanner, and after recording a jaw relation in the occlusal rim, a definitive impression was obtained with polyvinyl siloxane impression material. In addition, facial scan data with occlusal rim was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a Food and Drug Administration (FDA)-approved liquid photocurable resin. The denture showed adequate retention, support and stability, and results were satisfied functionally and aesthetically.

Network-centric CAD

  • Lee, Jae-Yeol;Kim, Hyun;Lee, Joo-Haeng;Do, Nam-Chul;Kim, Hyung-Sun
    • Proceedings of the CALSEC Conference
    • /
    • 2001.08a
    • /
    • pp.615-624
    • /
    • 2001
  • Internet technology opens up another domain for building future CAD/CAM environment. The environment will be global, network-centric, and spatially distributed. In this paper, we present a new approach to network-centric virtual prototyping (NetVP) in a distributed design environment. The presented approach combines the current virtual assembly modeling and analysis technique with distributed computing and communication technology fur supporting virtual prototyping activities over the network. This paper focuses on interoperability, shape representation, and geometric processing for distributed virtual prototyping. STEP standard and CORBA-based interfaces allow the bi-directional communication between the CAD model and virtual prototyping model, which makes it possible to solve the problems of interoperability, heterogeneity of platforms, and data sharing. STEP AP203 and AP214 are utilized as a means of transferring and sharing product models. In addition, Attributed Abstracted B-rep (AAB) is introduced as 3D shape abstraction for transparent and efficient transmission of 3D models and for the maintenance of naming consistency between CAD models and virtual prototyping models over the network.

  • PDF

Computer Aided Process Planning for 3D Printing

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • Computer aided process planning (CAPP) keeps an important role between the design and manufacturing engineering processes. A CAPP system is a digital link between a computer aided design (CAD) model and manufacturing instructions. CAPP have been researched and applied in manufacturing filed, however, one manufacturing area where CAPP has not been extensively researched is rapid prototyping (RP). RP is a technique for creating directly a three dimensional CAD data into a physical prototype. RP enables to build physical models automatically and to use to reduce the time for the product development cycle as well as to improve the final quality of the designed product. Three-dimensional (3D) printing is one kind of RP that creates three-dimensional objects from CAD models. The paper presents a computer aided process planning system for printing medical products. 3D printing has been used to solve complex medical problems such as surgical instruments, bioengineered products, medical implants, and surgical guides.

Developing a 3D Indoor Evacuation Simulator using a Spatial DBMS (공간 DBMS를 활용한 3차원 실내 대피 경로 안내 시스템)

  • Kim, Geun-Han;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2008
  • Currently used 3D models, which are mostly focused on visualization of 3D objects and lack topological structure, have limitation in being used for 3D spatial analyses and applications. However, implementing a full topology for the indoor spatial objects is less practical due to the increase of complexity and computation time. This study suggests an alternative method to build a 3D indoor model with less complexity using a spatial DBMS. Storing spatial and nonspatial information of indoor spaces in DB tables enables faster queries, computation and analyses. Also it is possible to display them in 2D or 3D using the queried information. This study suggests a 2D-3D hybrid data model, which combines the 2D topology constructed from CAD floor plans and stored in a spatial DBMS and the 3D visualization functionality. This study showed the process to build the proposed model in a spatial DBMS and use spatial functions and queries to visualize in 2D and 3D. And, then, as an example application, it illustrated the process to build an indoor evacuation simulator.

  • PDF

RAPID GEOMETRIC 3D MODELING FOR AUTOMATED CONSTRUCTION EQUIPMENT

  • Jo, Yong-Gwon;Hass, Carl T.
    • Construction Engineering and Management
    • /
    • v.4 no.1 s.13
    • /
    • pp.55-60
    • /
    • 2003
  • Unstructured workspaces which are typical in construction contain unpredicable activities as well as changing environments. Most automated and semi-automated construction tasks require real-time information about the local workspace in the form of 3D geometric models. This paper describes and demonstrates a new rapid, local area geometric data extraction and 3D visualization method for unstructured construction workspaces that combines human perception, simple sensors, and descriptive CAD models. The rapid approach will be useful in construction in construction in order to optimize automated equipment tasks and to significantly improve safety and a remote operator's spatial perception of the workspace.

A basic Study on Establishment Plan of Design Information Traceability through Design Information Flow Identification for Controlled Equipment during the NPP Lifecycle (원전 생애주기 관리대상 기기의 정보 흐름 규명을 통한 설계정보 추적성 구현방안에 대한 기초 연구)

  • Lim, Byung-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.183-184
    • /
    • 2017
  • Some of the information created during the design phase of an New NPP life cycle is useful only for the execution of the construction phase; however, much of the information greatly impacts the longer-term operational phase. To most make use of design and construction information produced by data based design system during the construction and operation phase, This research is identified controlled data and drawn design information of controlled equipment from documents generated during the life-cycle stages. This study aimed to analyze related documents to assure traceability of controlled equipment from design phase through O&M and then suggested DB(Data Base) based control method on technical information of major equipment throughout nuclear power plant lifecycle.

  • PDF

Extraction of Design Information using the Symbol Recognition from Midship Drawings (중앙단면도 상의 심볼 인식법을 통한 설계정보의 추출)

  • 황호진;한순흥;김용대
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.58-68
    • /
    • 2003
  • Despite the availability of 3D CAD systems, the designers in shipyards still use 2D CAD systems because of the need to produce drawings rapidly and a shortage of labor. The design information of ship structure contained in 2D drawings is represented by symbols that are well known among designers in shipyard. The shapes of symbols are recognized by analysis of experienced and knowledgeable designers. We propose a method for automatic recognition of 2D symbols and extraction of design information from the midship drawings. The shape and rationale of 20 symbols used in ship design have been analyzed, and symbols have been classified according to the analysis. Based on the classified symbols, the developed system recognizes the symbols expressed in 2D drawings. The meaningless geometric shape is translated into the design information including designer's intents. The extracted design data can be applied to the downstream design process in shipyards, and the 3D ship model can be automatically created.

A Study on the Application of the Apparel CAD System(II) (어패럴 CAD System의 활용화 방안 연구(II) - 테일러드 쟈켓 설계 과정을 중심으로 -)

  • Nam, Yun-Ja;Lee, Hyoung-sook;Jo, Yeong-A
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.1
    • /
    • pp.43-56
    • /
    • 1994
  • The Purpose of this study was to utilize of CAD System in pattern making process for women's apparel. The automation by the use of CAD System provides the higher accuracy and efficiency in pattern making process. AccuMark 300 System was used. for .this study. The results from this study were as follows . 1. New size spec chart and grading pitch chart were developed based on the data analysis and fitting tests for female college students. 2. New jacket block was developed based on the torso length sloper 3. Automatic grading of jacket block have been developed by creation and modification of grading rules of block pattern. 4. Pattern Design Systyem(P/D/S) were enabled to be constructed directly form a block pattern by modifications to existing styled pattern. 5. Original master pattern was generated by P/D/S menu option. 6. Production pattem added seam allowance, notchs was generated by P/D/S menu option. 7 Interative maker making process have enabled to save a wide range of time and space. 8. Measurement of garment by P/D/S measuring tools is to utilize in garment costing, quality control.

  • PDF

A simplified CAD/CAM extraoral surgical guide for therapeutic injections

  • Cameron, Andrew;Custodio, Antonio Luis Neto;Bakr, Mahmoud;Reher, Peter
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.21 no.3
    • /
    • pp.253-260
    • /
    • 2021
  • Therapeutic injections into the craniofacial region can be a complex procedure because of the nature of its anatomical structure. This technical note demonstrates a process for creating an extra-oral template to inject therapeutic substances into the temporomandibular joint and the lateral pterygoid muscle. The described process involves merging cone-beam computed tomography data and extra-oral facial scans obtained using a mobile device to establish a correlated data set for virtual planning. Virtual injection points were simulated using existing dental implant planning software to assist clinicians in precisely targeting specific anatomical structures. A template was designed and then 3D printed. The printed template showed adequate surface fit. This innovative process demonstrates a potential new clinical technique. However, further validation and in vivo trials are necessary to assess its full potential.

Isogeometric Analysis of Mindlin Plate Structures Using Commercial CAD Codes (상용 CAD와 연계한 후판 구조의 아이소-지오메트릭 해석)

  • Lee, Seung-Wook;Koo, Bon-Yong;Yoon, Min-Ho;Lee, Jae-Ok;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.329-335
    • /
    • 2011
  • The finite element method (FEM) has been used for various fields like mathematics and engineering. However, the FEM has a difficulty in describing the geometric shape exactly due to its property of piecewise linear discretization. Recently, however, a so-called isogeometric analysis method that uses the non-uniform rational B-spline(NURBS) basis function has been developed. The NURBS can be used to describe the geometry exactly and play a role of basis functions for the response analysis. Nevertheless, constructing the NURBS basis functions in analysis is as costly as a meshing process in the FEM. Since the isogeometric method shares geometric data with CAD, it is possible to intactly import the model data from commercial CAD tools. In this paper, we use the Rhinoceros 3D software to create CAD models and export in the form of STEP file. The information of knot vectors and control points in the NURBS is utilized in the isogeometric analysis. Through some numerical examples, the accuracy of isogeometric method is compared with that of FEM. Also, the efficiency of the isogeometric method that includes the CAD and CAE in a unified framework is verified.