• Title/Summary/Keyword: 3D 프린팅 패션

Search Result 38, Processing Time 0.022 seconds

Compressive Properties of 3D Printed TPU Samples with Various Infill Conditions (채우기 조건에 따른 3D 프린팅 TPU 샘플의 압축 특성)

  • Jung, Imjoo;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.3
    • /
    • pp.481-493
    • /
    • 2022
  • This study investigated process conditions for 3D printing through manufacturing thermoplastic polyurethane (TPU) samples under different infill conditions. Samples were prepared using a fused deposition modeling 3D printer and TPU filament. 12 infill patterns were set (2D: grid, lines, zigzag; 3D: triangles, cubic, cubic subdivision, octet, quarter cubic; 3DF: concentric, cross 3D, cross, honeycomb), with 3 infill densities (20%, 50%, 80%). Morphology, actual time/weight and compressive properties were analyzed. In morphology: it was found that, as infill density increased, the increase rate of the number of units rose for 2D and fell for 3DF. Printing time varied with the number of nozzle movements. In the 3DF case, the number of nozzle movements increased rapidly with infill density. Sample weight increased similarly. However, where the increase rate of the number of units was low, sample weight was also low. In compressive properties: compressive stress increased with infill density and stress was high for the patterns with layers of the same shape.

Segmental Hard Shell Design of Knee Protector for Children Using 3D Printing (3차원 프린팅을 이용한 어린이용 무릎보호대의 분절형 하드쉘 설계)

  • Lee, Hyojeong;Lee, Yejin
    • Journal of Fashion Business
    • /
    • v.21 no.4
    • /
    • pp.116-126
    • /
    • 2017
  • This study applied a segmented hard shell design on knee protectors for children with the objective of increasing mobility. The prototype of the hard shell that does not correspond to movement of the body among components of the knee protector was developed. Surface modeling was conducted based on 3D knee data to enhance comfort through optimized fit on the knee joint where the hard shell would be worn. For this, previous studies on changes in skin near the knee joint during knee flexion were reviewed to establish basic segmental lines. The basic design included six segments, and the number of segments was used as the design variable by increasing or decreasing it to 0, 3, 6, 9, and 14 segments. A prototype was produced from 3D printing with TPU material, worn for wearing assessment. Results revealed fewer numbers of segments resulting in less fit with the body, while actual appearance was stable. Meanwhile, the number of proper segments improved better fit with the body during movement. The wearing assessment revealed the amount of gap reflects change in skin length depending on movement. Assessment results demonstrated basic segment design, S6 with 6 segments, had the best design and most optimized fit. Findings in this study can provide key data for designing knee protection products for children.

A Survey for the Development of a 3D Printing Related Course in Fashion Design Department (3D 프린팅 관련 교과목 개발을 위한 기초 연구 - 전문대학 패션디자인과를 중심으로 -)

  • Jeong, Hwa-Yeon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.19 no.3
    • /
    • pp.33-47
    • /
    • 2017
  • The purpose of this study is to provide fundamental data for the development of new course on 3D printing in the fashion design department. In order to investigate the perception of and educational needs in 3D printing, the data were collected from 266 students (female 68.8%, male 31.2%) majoring in fashion design aged 18-25 living in the capital area. The results of this survey showed that when investigating perceptions of 3D printing, it was found that 68.8% of answerers had indeed heard of 3D printing. Regarding the path they came to know about 3D printing, mass media such TV was the most frequent answer (54.6%). On the other hand, to the question asking about their intention to take the subject if given, approximately 71% said "Yes". Also, if a modeling class were given, the division that they wanted to explore most in the fashion industry was fashion jewelry. Finally, to the question asking interest in starting a business, 71.1% answered that they had interest. Out of those that answered that they had interest, when questioned about in which field they wanted to start a business, the most frequent answer was fashion online shopping mall. Finally, NCS-based 3D printing courses were suggested in the Fashion Design area. As 3D printing techniques are actively applied to the fashion industry overseas, creative education is needed through the integration of fashion and 3D printing technology by introducing 3D printing related programs in colleges.

  • PDF

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.

Last Design for Men's Shoes using 3D Foot Scanner and 3D Printer (3D 발 스캐너와 3D 프린터를 이용한 남성화 라스트 설계)

  • Oh, Seol-Young;Suh, Dong-Ae;Kim, Hyung-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.2
    • /
    • pp.186-199
    • /
    • 2016
  • The shoe last which is the framework for the shoemaking is intensively combined with the 3D data and technologies. International shoe companies have already commercialized 3D printing technology in producing the shoe, but domestic shoe companies are still in their early stages. This study used the 3D scanning, 3D modeling and 3D printing of the high-technology to make the shoe last. This 3D producing processes should be helpful in building competitiveness in domestic shoe industry. The 3D foot scanning data of men in 30s(n=200) were collected in SizeKorea(2010). The basic statistics, factor and cluster analysis were performed. They were categorized in 3 groups by 3D foot measurement data, and the standard models were selected in each group. The cross sections in XY, YZ and XZ planes sliced from 3D scan data of the standard model were used in the sketches of the 3D shoe last modeling. The 3D shoe last was modeled by Solidworks CAD and printed by MakerBot Replicator2; a desktop 3D printer. This research showed the potential for utilization of 3D printing technology in the domestic shoe industry. The 3D producing process; 3D scanning, 3D modeling and 3D printing is expected to utilized widely in the fashion industry within the nearest future.

Butterfly Motif Design in Contemporary Fashion Collection - Focusing on VOGUE from 2019 to 2023 - (현대 패션컬렉션에 표현된 나비모티브 디자인 분석 -2019년~2023년 VOGUE를 중심으로-)

  • Shin, Jaeyoung;Huh, Jungsun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.379-386
    • /
    • 2024
  • The purpose of this study was to pay attention to the increase in the frequency of expression of butterflies and insects, whose decrease in the number of individuals is symbolized as a measure of environmental pollution, among the various motifs of nature as we go through the COVID-19, when we realized the importance of nature. The scope of this study was limited to fashion collection fashion show photos and interview articles of online for fashion collections from 2019 to 2023. As a result of the study, 185 butterfly motivation fashion design appeared, and digital printing techniques were the most used as a type of plane expression method. Along with this, techniques such as quilting, embroidery, and beading have appeared a lot as techniques to express the planar motif of butterflies. As for the three-dimensional expression types, 3D printing, laser cutting, corsage techniques, and draping techniques showed similar proportion. It can be seen that the expressed butterfly motif had more realistic description the shape of the butterfly as it was than abstract expressions. In conclusion, it can be seen that the butterfly motif fashion design over the past five years contains a stronger message about the environment than the butterfly motif fashion in the past. It was confirmed that it is a motif with a great symbolic meaning that can convey an eco-friendly message beyond just the morphological beauty and colorful design elements of the butterfly.

The Analysis on the Torso Type Dress Form Developed Through the 3-D Virtual Body Modeling of the Korean Female Fashion Models (국내 여성 패션모델의 3차원 가상인체 모델링을 통한 토르소형 인대 개발과 그 특성 분석)

  • Park, Gin Ah
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.2
    • /
    • pp.157-175
    • /
    • 2015
  • The study was aimed to develop a torso-type dress form representing body features of the female fashion models in Korea. To fulfill this purpose, 5 female fashion models aged between 20 and 26 having the average body measurements of professional fashion models in Korea were selected and their 3-D whole body scanned data were analysed. The 3-D whole body scanning method enabled to generate a virtual female fashion model within the CAD system by measuring the subjects' body shapes and sizes. In addition, the virtual model's body data led the development of a standard female fashion model dress form for the efficient fashion show preparation. In order to manufacture the real dress form for female fashion models, 3-D printing technology was adopted. The consequent results are as follows: (1) the body measurements (unit: cm) of the developed dress form were: biacromion length, 36.0, bust point to bust point, 16.6, front/back interscye lengths, 32.0/33.0, neck point to breast point, 26.0, neck point to breast point to waist line, 41.5, waist front/back lengths, 34.5/38.5, waist to hip length, 24.0, bust circumference, 85.0, underbust circumference, 75.0, waist circumference, 65.0, hip circumference, 92.0. (2) the body measurements differences between the developed and existing dress forms were highlighted with the body measurements of neck point to breast point and waist to hip length. (3) the body shape features of the developed dress form showed that bust, shoulder blade, shoulder slope, abdomen and back waist line to hip line parts were more realistically manufactured.

Development of futurism fashion design based on 3D digital clothing technology (3D 가상착의를 활용한 미래주의 패션 디자인)

  • Cui, Xuemeng;Lee, Yoon Mee;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.5
    • /
    • pp.732-751
    • /
    • 2022
  • In this study, we aimed to apply 3D digital printing to basic clothing production and to propose futuristic fashion design and production methods that correspond to contemporary trends. Literature on future trends, dynamism, mechanical aesthetics, and experimentalism were used to define the characteristics of "futurism." Based on theoretical considerations about futurism, we created fashion designs using 3D digital printing methods. These designs were produced using the aesthetic characteristics of futurism; the 3D digital clothing program; and application of digital printing technologies to futuristic silhouettes, colors, and materials. The results were as follows: First, with the application of futurism as a fashion motif, we pursued collaboration between artistic work and fashion, and we then explored the possibility of creative expression. Second, harmony between achromatic and chromatic colors revealed even better dynamism and activeness, and the potential to express dynamism was observed. Third, with the development of fashion design processes based on 3D digital printing methodologies, it was found to be possible to eliminate the limitations of time and space, solve problems related to limited budget or communication, and positively influence the fashion industry by enhancing convenience and diversity. Fourth, with the development of fashion design that utilizes digital printing, it was found that problems related to time, space, or limited budget were able to be solved, as compared to the use of traditional printing and image reproduction.

Design of motion-adaptable 3D printed impact protection pad (동작 가변적 3D 프린팅 충격보호패드의 설계)

  • Park, Junghyun;Lee, Jinsuk;Lee, Jeongran
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.3
    • /
    • pp.403-413
    • /
    • 2022
  • The purpose of this study was to develop a 3D mesh-type impact protection pad with excellent motion adaptability and functionality by applying 3D printing technology. The hexagonal 3D mesh, which constitutes the basic structure of the pad, comprises two types: small and large. The bridge connecting the basic units was designed as the I-type, V-type, IV-type, and VV-type. After evaluating the characteristics of the bridge, it was found that the V-type bridge had the highest flexibility and tensile elongation. The hip joint pad and knee pad were completed by combining the hexagonal 3D mesh structure with the optimal bridge design. The impact protection pad was printed using a fused deposition modeling-type 3D printer with a filament made of thermoplastic polyurethane material, and the protection pad's performance was evaluated. When an impact force of approximately 6,500N was applied to the pad, the force attenuation percentage was 78%, and when an impact force of approximately 8,000N was applied, the force attenuation percentage was 75%. Through these results, it was confirmed that the 3D-printed impact protection pad with a hexagonal 3D mesh structure connected by a V-shaped bridge developed in this study can adapt to changes in the body surface according to movement and provides excellent impact protection performance.

A Study on the Development of 3D printed garments for Fashion Show (패션쇼를 위한 3D 프린팅 의상 디자인 개발 연구)

  • Lee, Hyunseung
    • Fashion & Textile Research Journal
    • /
    • v.21 no.3
    • /
    • pp.267-276
    • /
    • 2019
  • This study develops 3D-printed-garment collections for a fashion show presentation. A design concept using traditional patterns that consisted of garments regarding the limitation of the printing technology was investigated in order to develop the collection. The structures of the connecting joints of the textile parts which could be easily and sturdily interconnected were invented. Wearability as garments that could be naturally worn on the human body were sought. As a result, four 3D-printed-garments were developed. The 1st garment composed of objects based on a 'Yeon-Dang-Cho'-pattern was constructed as a geometric robe style using a FDM 3D printer and transparent TPU filaments. The 2nd and 3rd 3D-printed-garments composed of an object based on a 'Boe-Sang-Hwa'-pattern was constructed as a distorted one-piece exaggerating the silhouettes of shoulders and waist parts as well as a straight asymmetric tunic style that used the same printer and material as the 1st garment. The last garment composed of an object based on a 'Boe-Sang-Hwa'-pattern printed using a SLA 3D printer and flexible-liquid-resin was constructed attaching the objects on the fabric material by the hot-press machine. The four developed garments were presented in the opening fashion show of 'the 6th International 3D-printing Korea Expo'. This study provides a basic case for related studies to adapt 3D-printing technology in textile pattern development of garment construction.