• Title/Summary/Keyword: 3D 패턴제작

Search Result 307, Processing Time 0.031 seconds

The Analysis of Wideband Microstrip Slot Antenna with Cross-shaped Feedline (십자형 급전선을 갖는 광대역 마이크로스트립 슬롯 안테나의 특성 분석)

  • Jang, Yong-Ung;Han, Seok-Jin;Sin, Ho-Seop;Kim, Myeong-Gi;Park, Ik-Mo;Sin, Cheol-Je
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.35-42
    • /
    • 2000
  • A cross-shaped microstripline-fed printed slot antenna having wide bandwidth Is presented in this paper. The proposed antenna is analyzed by using the Finite-Difference Time-Domain (FDTD) method. It was found that the bandwidth of the antenna depends highly on the length of the horizontal and vertical feedline as well as the offset position of the feedline. The maximum bandwidth of this antenna is from 1.975 GHz to 4.725 GHz, which is approximately 1.3 octave, for the VSWR $\leq$ 2. Experimental data for the return loss and the radiation pattern of the antenna are also presented. and they are in good agreement with the FDTD results.e FDTD results.

  • PDF

UWB/Bluetooth for a High Speed Wireless Communication Network Dual Band Microstrip Antenna Design (해상 고속 무선 통신망을 위한 UWB/Bluetooth용 이중대역 마이크로스트립 안테나 설계)

  • Oh, Mal-Geun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.960-966
    • /
    • 2018
  • Communication antennas used at sea have been developed remarkably. However, the speed of this development is insufficient when compared with user demands. Therefore, we developed an antenna for UWB/Bluetooth that operates on 3 [GHz] and 5.72 [GHz] bands in order to use the high-speed communication network system which improved antenna miniaturization, gain and radiation patterns. To improve bandwidth, a microstrip patch antenna was selected and CST Microwave Studio 2014 program was used. Through the program, we calculated the slot width, length, transmission line width, etc. using a theoretical formula at each step. These figures were checked through simulation to see if they meet production standards. UWB for high-speed wireless communication for short-range communication at sea, Bluetooth for exchanging information at a short distance by connecting each device, and corresponding technology can be easily utilized.

Improving Stability and Characteristic of Circuit and Structure with the Ceramic Process Variable of Dualband Antenna Switch Module (Dual band Antenna Switch Module의 LTCC 공정변수에 따른 안정성 및 특성 개선에 관한 연구)

  • Lee Joong-Keun;Yoo Joshua;Yoo Myung-Jae;Lee Woo-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.105-109
    • /
    • 2005
  • A compact antenna switch module for GSM/DCS dual band applications based on multilayer low temperature co-fired ceramic (LTCC) substrate is presented. Its size is $4.5{\times}3.2{\times}0.8 mm^3$ and insertion loss is lower than 1.0 dB at Rx mode and 1.2 dB at Tx mode. To verify the stability of the developed module to the process window, each block that is diplexer, LPF's and bias circuit is measured by probing method in the variation with the thickness of ceramic layer and the correlation between each block is quantified by calculating the VSWR In the mean while, two types of bias circuits -lumped and distributed - are compared. The measurement of each block and the calculation of VSWR give good information on the behavior of full module. The reaction of diplexer to the thickness is similar to those of LPF's and bias circuit, which means good relative matching and low value of VSWR, so total insertion loss is maintained in quite wide range of the thickness of ceramic layer at both band. And lumped type bias circuit has smaller insertion itself and better correspondence with other circuit than distributed stripline structure. Evaluated ceramic module adopting lumped type bias circuit has low insertion loss and wider stability region of thickness over than 6um and this can be suitable for the mass production. Stability characterization by probing method can be applied widely to the development of ceramic modules with embedded passives in them.

  • PDF

A Miniaturized and Band Rejection Characteristic of Bow-Tie Monopole UWB Antenna (보우-타이 모노폴 UWB 안테나의 소형화 및 대역 저지 특성)

  • Choi, Hyung-Seok;Choi, Kyoung;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.300-305
    • /
    • 2012
  • In this paper, a miniaturized bow-tie monopole UWB antenna with band rejection characteristic is proposed. To miniaturize the proposed antenna, a perfect magnetic wall(PMW) condition is applied to primitive bow-tie monopole antenna. An uneven ground patch, a tapered feeding structure and a edge-chopped main patch are adapted for impedance matching. A quater-lambda slot resonator is inserted at main patch to prevent interference in UWB band from another band. The proposed antenna is fabricated on Taconic RF60-A substrate with relative permittivity of 6.15. The size of the proposed antenna is $30.0{\times}39.7mm^2$, which is only 45 % of the conventional bow-tie monopole antenna. The proposed antenna covers full UWB band with return losses less than -10 dB and has band stop characteristic in 5 GHz WLAN band. The maximum gains are within -1.0~5.0 dBi, the group delay variations are within 1.0 ns and the radiation patterns show directivity characteristics in x-y plane.

Design and Implementation of Dual Wideband Dipole Type Antenna for the Reception of S-DMB and 2.4/5 GHz WLAN Signals (S-DMB와 2.4/5 GHz WLAN 신호 수신을 위한 이중 광대역 다이폴형 안테나의 설계 및 구현)

  • Kim, Sung-Min;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1021-1029
    • /
    • 2006
  • In this paper, we designed and implemented a dual wideband dipole type antenna for the reception of S-DMB (Satellite Digital Multimedia Broadcasting) and 2.4/5 GHz WLAN(Wireless Local Area Network) signals. The proposed antenna based on conventional monopole type dual band antenna was implemented as planar wideband dipole type antenna with the volume of $8{\times}33.8{\times}1.68mm^3$. The proposed antenna is printed type on FR4 substrate of 1.6 mm thick and composed of a dipole type antenna for low frequency band and two symmetric structured resonance elements for high frequency band. We confirmed antenna area with dense surface current for each frequency band with simulation. By varying the length of the antenna area with dense surface current, we could vary resonance frequency of each frequency band separately. Impedance bandwidths$(VSWR{\leq}2)$ are 362 MHz(14.23 %) for 2 GHz band and 1188 MHz(22.13, %) for 5 GHz band which show wideband characteristic. Measured maximum gains were 4.33 dBi for 2 GHz band and 5.48 dBi for 5 GHz band which showed improved performance. And the implemented antenna has a good omni-directional radiation pattern characteristic.

Analysis of Microstrip Bandstop Filter Based on the Photonic Bandgap(PBG) Structure Using FDTD (FDTD를 이용한 PBG 구조를 갖는 마이크로스트립 대역저지 여파기에 관한 분석)

  • Ho, Jin-Key;Yun, Young-Seol;Park, Sang-Hyun;Choi, Young-Wan;Kim, Hyeong-Seok;Kim, Ho-Seong
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.52-62
    • /
    • 2003
  • In this paper, photonic bandgap(PBG) bandstop filters which are composed of periodically etched circles in the ground plane show good microwave characteristics with the harmonic suppression on stopband. The PBG structures were analyzed using a finite-difference time-domain(FDTD) simulation and experimental measurement. The FDTD technique is used because it can simulate arbitrary 3-D structures and provide broadband frequency response. The analysis results are presented it is the same that only one row of etched circles and 2-dimension three rows of etched circles. And we show the PBG resonator characteristics between etched circles using field pattern and frequency characteristics as functions of etched circle number n, etched circle radius r and period a.

  • PDF

Performance Verification of Active Phased Array Broadband Antenna in Ka-Band (Ka대역 능동위상배열 광대역 안테나 성능 검증 )

  • Youngwan Kim;Jong-Kyun-Back;Hee-Duck Chae;Ji-Han Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • This paper dedcribes the design. verification, and analysis techniques for an advanced phased array antenna. When applying an active phased array antenna to an aircraft or missile, miniaturization of the array antenna and wide-angle beam steering characteristics can be unavoidable antenna design considerations. In particular, the active reflection coefficient characteristics when electronically steering a wide-angle beam is a design parameter that must be minimized in terms of system survival and system performance. As a radiator suitable for broadband characteristics and wide-angle beam steering, this paper designed an array structure using SFN and minimized the active reflection coefficient according to beam steering of up to 40° based on the spherical coordivate system angle. The bandwidth of the radiator was confirmed to be 3GHz based on active reflection in the Ka-band. In addition, the performance of the actually manufactured 8by8 array antenna wsa analyzed by measuring the single pattern of the radiator through a near-field test, mathematically synthesizing it, and predicting the Tx/TRx beam used in the seeker system.

Development of a split beam transducer for measuring fish size distribution (어체 크기의 자동 식별을 위한 split beam 음향 변환기의 재발)

  • 이대재;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.196-213
    • /
    • 2001
  • A split beam ultrasonic transducer operating at a frequency of 70 kHz to use in the fish sizing echo sounder was developed and the acoustic radiation characteristics were experimentally analyzed. The amplitude shading method utilizing the properties of the Chebyshev polynomials was used to obtain side lobe levels below -20 dB and to optimize the relationship between main beam width and side lobe level of the transducer, and the amplitude shading coefficient to each of the elements was achieved by changing the amplitude contribution of elements with 4 weighting transformers embodied in the planar array transducer assembly. The planar array split beam transducer assembly was composed of 36 piezoelectric ceramics (NEPEC N-21, Tokin) of rod type of 10 mm in diameter and 18.7 mm in length of 70 kHz arranged in the rectangular configuration, and the 4 electrical inputs were supplied to the beamformer. A series of impedance measurements were conducted to check the uniformity of the individual quadrants, and also in the configurations of reception and transmission, resonant frequency, and the transmitting and receiving characteristics were measured in the water tank and analyzed, respectively. The results obtained are summarized as follows : 1. Average resonant and antiresonant frequencies of electrical impedance for four quadrants of the split beam transducer in water were 69.8 kHz and 83.0 kHz, respectively. Average electrical impedance for each individual transducer quadrant was 49.2$\Omega$ at resonant frequency and 704.7$\Omega$ at antiresonant frequency. 2. The resonance peak in the transmitting voltage response (TVR) for four quadrants of the split beam transducer was observed all at 70.0 kHz and the value of TVR was all about 165.5 dB re 1 $\mu$Pa/V at 1 m at 70.0 kHz with bandwidth of 10.0 kHz between -3 dB down points. The resonance peak in the receiving sensitivity (SRT) for four combined quadrants (quad LU+LL, quad RU+RL, quad LU+RU, quad LL+RL) of the split beam transducer was observed all at 75.0 kHz and the value of SRT was all about -177.7 dB re 1 V/$\mu$Pa at 75.0 kHz with bandwidth of 10.0 kHz between -3 dB down points. The sum beam transmitting voltage response and receiving senstivity was 175.0 dB re 1$\mu$Pa/V at 1 m at 75.0 kHz with bandwidth of 10.0 kHz, respectively. 3. The sum beam of split beam transducer was approximately circular with a half beam angle of $9.0^\circ$ at -3 dB points all in both axis of the horizontal plane and the vertical plane. The first measured side lobe levels for the sum beam of split beam transducer were -19.7 dB at $22^\circ$ and -19.4 dB at $-26^\circ$ in the horizontal plane, respectively and -20.1 dB at $22^\circ$ and -22.0 dB at $-26^\circ$ in the vertical plane, respectively. 4. The developed split beam transducer was tested to estimate the angular position of the target in the beam through split beam phase measurements, and the beam pattern loss for target strength corrections was measured and analyzed.

  • PDF

A Study of the RCS Reduction by Pattern Synthesis for Singly Curved Structures (패턴 합성을 통한 단일 곡면 구조에서의 RCS 감소 기술에 관한 연구)

  • Kim, Woojoong;Seo, Hyeong Pil;Kim, Youngsub;Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.366-373
    • /
    • 2013
  • This paper discusses the singly curved phased reflector for reduced RCS pattern, which has minimized RCS level at boresight with a null by phase cancelation and the lowered RCS level of main beam by splitting the main beam into multi directions. Considering the reduced level of boresight and main beam compared to the same sized reference PEC, this proposed multi-beam reflector can be adopted in the mono-static radar and the bi-static radar environment. The proposed reflector is a multi-beam reflector, which has different phase distributions at each row for different steering angle. It is designed through an intermediate stage of a single and dual-beam reflector. The behaviors of the designed reflectors are verified through full-wave simulation and experiment. The reflectors are designed in the frequency of 10 GHz and it has a size $240{\times}180mm^2$($8{\times}6\;{\lambda}^2$) with the curvature k=3.3. From the measured results, the proposed reflectors reduce the reflected power by 17 dB at boresight.

Studies on Miniaturization and Notched Wi-Fi Bandwidth for UWB Antenna Using a Wide Radiating Slot (넓은 방사 슬롯을 이용한 초광대역 안테나의 소형화와 Wi-Fi 대역의 노치에 관한 연구)

  • Beom, Kyeong-Hwa;Kim, Ki-Chan;Jo, Se-Young;Ko, Young-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.265-274
    • /
    • 2011
  • In this paper, it is studied on wide radiating slot antenna's miniaturization for ultra wide-band(UWB) technologies and notch structure to prevent interference between UWB systems and existing wireless systems for using Wi-Fi service of IEEE standards 802.11 a/n. Proposed antenna that wide slot is decreased from $\lambda/2$ to $\lambda/4$ length of resonant frequency has decreased by 72 % compared with conventional antenna. And optimized T-shaped CPW-fed stub has satisfied UWB bandwidth for 3.0~11.8 GHz. Then, creating 2-order Hilbert curve slot line in the stub's patch area, 4.9~5.6 GHz that centered frequency is 5 GHz is eliminated. Finally, the designed antenna constructed on FR4-epoxy has $20{\times}15\;mm^2$ dimension. The measured results that are obtained return loss under -10 dB through 3.2~11.8 GHz without Wi-Fi bandwidth, a linear phase characteristic, a stable group delay, and omnidirectional radiation patterns are presented.