• Title/Summary/Keyword: 3D 객체

Search Result 889, Processing Time 0.032 seconds

An Object-based Database Mapping Technology for 3D Graphic Data (3차원 그래픽 데이터를 위한 객체단위 데이터베이스 매핑 기법)

  • Jo, Hee-Jeong;Kim, Yong-Hwan;Lee, Ki-Jun;Hwang, Soo-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.8
    • /
    • pp.950-962
    • /
    • 2006
  • Recently, there have been increased many 3 dimensional graphic applications in Internet. Thus, a growing number of methods have been proposed for retrieving 3-D graphic data using their 3D features such as color, texture, shape, and spacial relations. However, few researches focus on 3D graphic modeling and database storage techniques. In this paper, we introduce a system that can store 3D graphics data modeled by XML-based 3D graphics markup language, 3DGML, and support content-based retrievals on 3D data by using SQL. We also present a mapping technique of 3DGML to relational database. The mapping process includes the extraction of semantic information from 3DGML and translate it into relational format. Finally, we show examples of SQL queries which use the 3D information contained in a 3D scene such as objects, 3D features, descriptions and scene-object component hierarchy.

  • PDF

Tolerance Analysis on 3-D Object Modeling Errors in Model-Based Camera Tracking (모델 기반 카메라 추적에서 3차원 객체 모델링의 허용 오차 범위 분석)

  • Rhee, Eun Joo;Seo, Byung-Kuk;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Accuracy of the 3-D model is essential in model-based camera tracking. However, 3-D object modeling requires dedicated and complicated procedures for precise modeling without any errors. Even if a 3-D model contains a certain level of errors, on the other hand, the tracking errors cause by the modeling errors can be different from its perceptual errors; thus, it is an important aspect that the camera tracking can be successful without precise 3-D modeling if the modeling errors are within the user's permissible range. In this paper, we analyze the tolerance of 3-D object modeling errors by comparing computational matching errors with perceptual matching errors through user evaluations, and also discuss permissible ranges of 3-D object modeling errors.

Design and Implementation of 3D Studio Max Plug-In in Collaborative Systems (협력시스템에서 3D 스튜디오 맥스 플러그인 설계 및 개발)

  • Kwon, Tai-Sook;Lee, Sung-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.5
    • /
    • pp.498-509
    • /
    • 2001
  • Collaborative systems allow users, who may be far removed from each other geographically, to do collaborative work such as 3D animation, computer game, and industrial design in a single virtual space. This paper describes our experience to develop a collaborative system framework that aims at expanding the some functions of a stand-alone visual modeling tool, called 3D Studio Max, into those of the distributed collaborative working environments. The paper mainly deals with design and implementation of a 3D shared-object Plug-In with respect to the 3D Studio Max Plug-In Software Development Kit in the distributed collaborative system developed by the authors. There are two major functions of the proposed scheme; one is to write 3D object-information to the shared memory after extracting it from the 3D Studio Max, the other is to create 3D objects after retrieving them from the shared memory. Also, the proposed scheme provides a simple way of storing 3D objects that have variable size, by means of shared memory which located in between the collaborative system clients and 3D studio Max. One of the remarkable virtures of the Plug-In is to reduce a considerable amount of shared object data which in consequence can mitigate the network overhead. This can be achieved by the fact that the system is able to extract a minimum amount of 3D objects that are required to transmit. Also, using the proposed scheme, user can facilitate 3D Studio Max into distributed collaborative working environments. This, in consequence give many benefits such as saving time as well as eliminating space constraints in the course of 3D modeling when we are under industrial design process.

  • PDF

3D Object Detection with Low-Density 4D Imaging Radar PCD Data Clustering and Voxel Feature Extraction for Each Cluster (4D 이미징 레이더의 저밀도 PCD 데이터 군집화와 각 군집에 복셀 특징 추출 기법을 적용한 3D 객체 인식 기법)

  • Cha-Young, Oh;Soon-Jae, Gwon;Hyun-Jung, Jung;Gu-Min, Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.471-476
    • /
    • 2022
  • In this paper, we propose an object detection using a 4D imaging radar, which developed to solve the problems of weak cameras and LiDAR in bad weather. When data are measured and collected through a 4D imaging radar, the density of point cloud data is low compared to LiDAR data. A technique for clustering objects and extracting the features of objects through voxels in the cluster is proposed using the characteristics of wide distances between objects due to low density. Furthermore, we propose an object detection using the extracted features.

3D Multimedia Manipulation System using XML-based Scenario (XML기반 시나리오를 이용한 3D 멀티미디어 제작 시스템)

  • Jeon, Hyoung-Jun;Kim, Jang-Sik;Hwang, Bu-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.106-108
    • /
    • 2005
  • 3D에 대한 관심이 높아지면서 3D 애니메이션, 가상 현실, 3D 게임 등의 다양한 응용 분야에서 3D 컨텐츠에 대한 기술이 급격히 증가하였다. 그러나 3D 컨텐츠를 개발하기 위하여 특별한 3D 컨텐츠 개발 소프트웨어를 배워야 하고, 그에 따른 시간을 필요로 한다. 또한 여러 가지 상이한 개발 소프트웨어를 사용하여 개발하기 때문에 개발 소프트웨어마다 다른 방식으로 결과물들이 나온다. 본 논문에서는 이런 문제점들을 해결하기 위하여 XML 기반의 시나리오를 제안하였다. 그리고 XML 기반의 시나리오에 맞게 컨텐츠를 제작할 수 있는 시나리오 작성모듈과 XPlayer를 개발하였다. 그 결과 XML의 특징인 유연성과 확장성을 이용하여 개발 소프트웨어에 의존하지 않는 3D 멀티미디어 컨텐츠의 제작을 가능하게 하였고, 제작된 3D 객체들은 XML을 통해 모든 객체들을 요소(element)화하여 객체의 재사용을 가능하게 하였다.

  • PDF

A Study on Create Depth Map using Focus/Defocus in single frame (단일 프레임 영상에서 초점을 이용한 깊이정보 생성에 관한 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.4
    • /
    • pp.191-197
    • /
    • 2012
  • In this paper we present creating 3D image from 2D image by extract initial depth values calculated from focal values. The initial depth values are created by using the extracted focal information, which is calculated by the comparison of original image and Gaussian filtered image. This initial depth information is allocated to the object segments obtained from normalized cut technique. Then the depth of the objects are corrected to the average of depth values in the objects so that the single object can have the same depth. The generated depth is used to convert to 3D image using DIBR(Depth Image Based Rendering) and the generated 3D image is compared to the images generated by other techniques.

Object Detection Based on Hellinger Distance IoU and Objectron Application (Hellinger 거리 IoU와 Objectron 적용을 기반으로 하는 객체 감지)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.63-70
    • /
    • 2022
  • Although 2D Object detection has been largely improved in the past years with the advance of deep learning methods and the use of large labeled image datasets, 3D object detection from 2D imagery is a challenging problem in a variety of applications such as robotics, due to the lack of data and diversity of appearances and shapes of objects within a category. Google has just announced the launch of Objectron that has a novel data pipeline using mobile augmented reality session data. However, it also is corresponding to 2D-driven 3D object detection technique. This study explores more mature 2D object detection method, and applies its 2D projection to Objectron 3D lifting system. Most object detection methods use bounding boxes to encode and represent the object shape and location. In this work, we explore a stochastic representation of object regions using Gaussian distributions. We also present a similarity measure for the Gaussian distributions based on the Hellinger Distance, which can be viewed as a stochastic Intersection-over-Union. Our experimental results show that the proposed Gaussian representations are closer to annotated segmentation masks in available datasets. Thus, less accuracy problem that is one of several limitations of Objectron can be relaxed.

Attention based Feature-Fusion Network for 3D Object Detection (3차원 객체 탐지를 위한 어텐션 기반 특징 융합 네트워크)

  • Sang-Hyun Ryoo;Dae-Yeol Kang;Seung-Jun Hwang;Sung-Jun Park;Joong-Hwan Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.190-196
    • /
    • 2023
  • Recently, following the development of LIDAR technology which can detect distance from the object, the interest for LIDAR based 3D object detection network is getting higher. Previous networks generate inaccurate localization results due to spatial information loss during voxelization and downsampling. In this study, we propose an attention-based convergence method and a camera-LIDAR convergence system to acquire high-level features and high positional accuracy. First, by introducing the attention method into the Voxel-RCNN structure, which is a grid-based 3D object detection network, the multi-scale sparse 3D convolution feature is effectively fused to improve the performance of 3D object detection. Additionally, we propose the late-fusion mechanism for fusing outcomes in 3D object detection network and 2D object detection network to delete false positive. Comparative experiments with existing algorithms are performed using the KITTI data set, which is widely used in the field of autonomous driving. The proposed method showed performance improvement in both 2D object detection on BEV and 3D object detection. In particular, the precision was improved by about 0.54% for the car moderate class compared to Voxel-RCNN.

A Research on how to turn Object oriented Database of civil materials to practical use (객체지향 Data Base를 이용한 토목자재 정보의 이용방안 연구)

  • Kwon, Oh-Yong;Han, Chung-Han;Kim, Do-Keun;Jo, Chan-Won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.708-711
    • /
    • 2008
  • This study is intended to build research for ways to utilize material information in the design and working business for public works. The contents and results of this study can be classified into object-oriented DB application to bridge construction and object-oriented DB utilization of civil material information. First, application of object-oriented DB to bridge construction 1) constructs the work unit of classified work table as an object(Each object constructs material information on the statement of quantity calculation as data), 2) constructs object-oriented DB for superstructure and substructure of PSC Beam bridge, 3) leads to the research for ways to utilize materials by developing 3D bridge prototype with REVIT structure. Secondly, ways to utilize object-oriented DB for civil material information identified the possibility for utilizing it in making 2D drawings for design work, preparing materials list, analyzing structure for working businesses, selecting and purchasing materials, managing process and maintaining. It is suggested that the results of this study should be applied to all bridge constructions through test-bed and additional studies so as to secure the credibility of the results of this study.

  • PDF

Graphic Hardware Based Visualization of Three Dimensional Object Boundaries in Volume Data Set Using Three Dimensional Textures (그래픽 하드웨어기반의 3차원 질감을 사용한 볼륨 데이터의 3차원 객체 경계 가시화)

  • Kim, Hong-Jae;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.623-632
    • /
    • 2008
  • In this paper, we used the color transfer function and the opacity transfer function for the internal 3D object visualization of an image volume data. In transfer function, creating values of between boundaries generally is ambiguous. We concentrated to extract boundary features for segmenting the visual volume rendering objects. Consequently we extracted an image gradient feature in spatial domain and created a multi-dimensional transfer function according to the GPU efficient improvement. Finally using these functions we obtained a good research result as an implementing object boundary visualization of the graphic hardware based 3D texture mapping.

  • PDF