• Title/Summary/Keyword: 3D 가시화

Search Result 555, Processing Time 0.024 seconds

Virtual Reality Using X3DOM (X3DOM을 이용한 가상현실)

  • Chheang, Vuthea;Ryu, Ga-Ae;Jeong, Sangkwon;Lee, Gookhwan;Yoo, Kwan-Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.165-170
    • /
    • 2017
  • Web 3D technology can be used to simulate the experiments of scientific, medical, engineering and multimedia visualization. On the web environment, 3D virtual reality can be accessed well without strictly on operating system, location and time. Virtual Reality (VR) is used to depict a three-dimensional, computer generated realistic images, sound and other sensations to replicated a real environment or an imaginary setting which can be explored and interacted with by a person. That person is immersed within virtual environment and is able to manipulate objects or perform a series of action. Virtual environment can be created with X3D which is the ISO standard for defining 3D interactive, web-based 3D content and integrating with multimedia. In this paper, we discuss about X3D VR stereo rendering scene and propose new X3D nodes for the HMD VR (head mounted display virtual reality). The proposed nodes are visualized by the web browser X3DOM of X3D.

Effective Volume Rendering and Virtual Staining Framework for Visualizing 3D Cell Image Data (3차원 세포 영상 데이터의 효과적인 볼륨 렌더링 및 가상 염색 프레임워크)

  • Kim, Taeho;Park, Jinah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • In this paper, we introduce a visualization framework for cell image data obtained from optical diffraction tomography (ODT), including a method for representing cell morphology in 3D virtual environment and a color mapping protocol. Unlike commonly known volume data sets, such as CT images of human organ or industrial machinery, that have solid structural information, the cell image data have rather vague information with much morphological variations on the boundaries. Therefore, it is difficult to come up with consistent representation of cell structure for visualization results. To obtain desired visual representation of cellular structures, we propose an interactive visualization technique for the ODT data. In visualization of 3D shape of the cell, we adopt a volume rendering technique which is generally applied to volume data visualization and improve the quality of volume rendering result by using empty space jittering method. Furthermore, we provide a layer-based independent rendering method for multiple transfer functions to represent two or more cellular structures in unified render window. In the experiment, we examined effectiveness of proposed method by visualizing various type of the cell obtained from the microscope which can capture ODT image and fluorescence image together.

Development of 3D Medical Image Processing System using VTK (VKT를 이용한 3차원 의료영상처리 시스템)

  • 김민석;옥경달;이상범;탁계래
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.442-444
    • /
    • 2002
  • 의료영상의 시각화는 의료정보 시스템에서 질환 진단시 유용하게 사용되고 있다. 특히, 2차원 의료영상의 3차원 가시화를 통한 모의 견습은 실전에서의 부담감을 줄이는데 큰 역할을 하고 있고 이러한 결과는 관련 S/W 개발로 이어지고 있다. 본 논문에서는 의료영상을 여러 형태로 가시화하는 방법과 그 구현 결과에 대해서 기술한다. 구현은 공개 라이브러리인 VTK를 이용함으로써 기존의 유사한 S/W에 비해 가격 경쟁력 또한 갖추고 있다.

  • PDF

Reconstruction of Color-Volume Data for Three-Dimensional Human Anatomic Atlas (3차원 인체 해부도 작성을 위한 칼라 볼륨 데이터의 입체 영상 재구성)

  • 김보형;이철희
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.199-210
    • /
    • 1998
  • In this paper, we present a 3D reconstruction method of color volume data for a computerized human atlas. Binary volume rendering which takes the advantages of object-order ray traversal and run-length encoding visualizes 3D organs at an interactive speed in a general PC without the help of specific hardwares. This rendering method improves the rendering speed by simplifying the determination of the pixel value of an intermediate depth image and applying newly developed normal vector calculation method. Moreover, we describe the 3D boundary encoding that reduces the involved data considerably without the penalty of image quality. The interactive speed of the binary rendering and the storage efficiency of 3D boundary encoding will accelerate the development of the PC-based human atlas.

  • PDF

Numerical Simulations of Cavitation Flow in Volumetric Gear Pump (회전 용적형 기어펌프의 캐비테이션 유동 해석)

  • Lee, Jung-Ho;Lee, Sang-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.28-34
    • /
    • 2011
  • A volumetric gear pump is often used in extensive industrial applications to provide both high pressure and sufficiently high flow rate by physical displacement of finite volume of fluid with each revolution. Template mesh function in commercial CFD software, PumpLinx, by which 3-D meshes in the complex region between rotor and housing can be readily generated was employed for 3-D flow simulations. For cavitation analysis full cavitation model was included in 3-D simulations. The results showed high pulsation in pressure and flowrate which is implicated in pump vibration and noise. A model test for cavitation visualization was conducted and the results showed good qualitative agreement with numerical prediction.

A Design and Implementation of Direct Volume Rendering View Program based on Web (웹 기반의 다이렉트 볼륨 렌더링 View 프로그램의 설계 및 구현)

  • Yoon, Yo-Sup;Yoon, Ga-Rim;Kim, Young-Bong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.402-407
    • /
    • 2004
  • Since the world wide web, simple and convenient tool, has proposed, the Internet became the most simple network resource which provide many informations of the world. Furthermore, various methodologies are developed to support the dynamic service such as 3D View web service. We will propose the volume rendering view program that interactively visualize the 3D data on the web. The 3D Data is obtained by stacking the 2D images along the z-direction. We also employ the COM based OCX control which is a kind of Active component. This web program will contribute the diagnosis of the diseases through the 3D visualization and image analysis functions at remote places.

  • PDF

Microfluidic Device for Ultrasound Image Analysis based on 3D Printing (초음파 영상 분석을 위한 3D 프린팅 기반 미세유체소자)

  • Kang, Dongkuk;Hong, Hyeonji;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • For the measurement of biophysical properties related with cardiovascular diseases (CVD), various microfluidic devices were proposed. However, many devices were monitored by optical equipment. Ultrasound measurement to quantify the biophysical properties can provide new insights to understand the cardiovascular diseases. This study aims to check feasibility of microfluidic device for ultrasound image analysis based on 3D printer. To facilitate acoustic transmission, agarose solution is poured around 3D mold connected with holes of the acrylic box. By applying speckle image velocimetry(SIV) technique, flow information in the bifurcated channel was estimated. Considering that ultrasound signal amplitude is determined by red blood cell (RBC) aggregation, RBC aggregation in the bifurcated channel can be estimated through the analysis of ultrasound signal. As examples of microfluidic device which mimic the CVD model, velocity fields in microfluidic devices with stenosis and aneurysm were introduced.

Registration and Visualization of Medical Image Using Conditional Entropy and 3D Volume Rendering (조건부 엔트로피와 3차원 볼륨 렌더링기법을 이용한 의료영상의 정합과 가시화)

  • Kim, Sun-Worl;Cho, Wan-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.277-286
    • /
    • 2009
  • Image registration is a process to establish the spatial correspondence between images of the same scene, which are acquired at different view points, at different times, or by different sensors. In this paper, we introduce a robust brain registration technique for correcting the difference between two temporal images by the different coordinate systems in MR and CT image obtained from the same patient. Two images are registered where this measure is minimized using a modified conditional entropy(MCE: Modified Conditional Entropy) computed from the joint histograms for the intensities of two given images, we conduct the rendering for visualization of 3D volume image.

3D interfaces for data visualization in immersive virtual environments (몰입형 가상현실에서의 데이터 가시화를 위한 인터페이스)

  • Hur, Young-Ju
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.511-514
    • /
    • 2011
  • 몰입형 가상현실 시스템의 발전으로 현실감 있는 가상현실의 구현이 가능해졌으며, 이런 현실감으로 인해 가상현실은 자동차 설계나 의료분야뿐만 아니라 시뮬레이션 실험 등의 공학 분야에 이르기까지, 그 실용 범위가 꾸준히 넓어지고 있다. 이런 가상현실 시스템의 가장 큰 특징은 실제로 체험하기 어렵거나 실재하지 않는 물체 또는 상황을 체험할 수 있게 해준다는 것으로, 가상현실 시스템을 시뮬레이션 분야에 적용하게 되면 데이터에 대한 보다 직관적인 해석이 가능해진다. 또, 데이터의 크기 및 복잡도의 증가로 인해 데이터 처리를 고성능 컴퓨터를 이용하는 경우가 증가하고 있는데, 이런 경우 가상현실 환경은 사용자가 직관적으로 데이터를 조작하고 가시화할 수 있게 해준다. 본 논문에서는 몰입형 가상현실에서 시뮬레이션 데이터를 가시화하고 제어할 수 있게 해주는 3차원 인터페이스에 대해 소개하고 구체적인 데이터 제어 방식에 대해 설명하기로 한다. 이런 3차원 인터페이스는 사용자가 데이터를 3차원적으로 조작함으로써 데이터에 대한 직관적인 이해도를 높여줄 수 있다.