• Title/Summary/Keyword: 3D (3Dimensional)

Search Result 6,383, Processing Time 0.048 seconds

Voxel-based Investigations of Phase Mask Effects on Susceptibility Weighted Images (화소 간 분석을 이용하여 자화율 가중 영상(SWI)에 나타난 위상 마스킹의 효과 분석)

  • Hwang, Eo-Jin;Kim, Min-Ji;Kim, Hyug-Gi;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • To investigate effects of phase mask on susceptibility-weighted images (SWI) using voxel-based analyses in normal elderly subjects. A three-dimensional (3D) gradient echo sequence ran to obtain SWIs in 20 healthy elderly subjects. SWIs with two (SWI2) and four (SWI4) phase multiplications were achieved with positive (PSWI) and negative (NSWI) phase masks to investigate phase mask effects. The voxel-based comparisons were performed using paired t-tests between PSWI and NSWI and between SWI2 and SWI4. Differences of signal intensities between magnitude images and SWI4 were larger than those between magnitude images and SWI2s. Differences of signal intensities between magnitude images and PSWIs were larger than those between magnitude images and NSWIs. Moreover, the signal intensities from NSWI2s and NSWI4s were greater than those from PSWI2s and PSWI4s, respectively. More differences of signal intensities between NSWI4 and PSWI4s were found than those between NSWI2s and PSWI2s in the whole brain images. The voxel-based analyses of SWI could be beneficial to investigate susceptibility differences on the entire brain areas. The phase masking method could be chosen to enhance brain tissue contrast rather than to enhance venous blood vessels. Therefore, it is recommended to apply voxel-based analyses of SWI to investigate clinical applications.

The analysis of physical features and affective words on facial types of Korean females in twenties (얼굴의 물리적 특징 분석 및 얼굴 관련 감성 어휘 분석 - 20대 한국인 여성 얼굴을 대상으로 -)

  • 박수진;한재현;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • This study was performed to analyze the physical attributes of the faces and affective words on the fares. For analyzing physical attributes inside of a face, 36 facial features were selected and almost of them were the lengths or distance values. For analyzing facial contour 14 points were selected and the lengths from nose-end to them were measured. The values of these features except ratio values normalized by facial vortical length or facial horizontal length because the face size of each person is different. The principal component analysis (PCA) was performed and four major factors were extracted: 'facial contour' component, 'vortical length of eye' component, 'facial width' component, 'eyebrow region' component. We supposed the five-dimensional imaginary space of faces using factor scores of PCA, and selected representative faces evenly in this space. On the other hand, the affective words on faces were collected from magazines and through surveys. The factor analysis and multidimensional scaling method were performed and two orthogonal dimensions for the affections on faces were suggested: babyish-mature and sharp-soft.

  • PDF

THE EFFECTS OF DIETARY CONSISTENCY ON THE TRABECULAR BONE ARCHITECTURE IN GROWING MOUSE MANDIBULAR CONDYLE : A STUDY USING MICRO-CONFUTED TOMOGRAPHY (성장 중인 쥐에서 음식물의 경도가 하악 과두의 해면골에 미치는 영향 : 미세전산화 단층촬영을 이용한 연구)

  • Youn, Seok-Hee;Lee, Sang-Dae;Kim, Jung-Wook;Lee, Sang-Hoon;Hahn, Se-Hyun;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.228-235
    • /
    • 2004
  • The development and proliferation of the mandibular condyle can be altered by changes in the biomechanical environment of the temporomandibular joint. The biomechanical loads were varied by feeding diets of different consistencies. The purpose of the present study was to determine whether changes of masticatory forces by feeding a soft diet can alter the trabecular bone morphology of the growing mouse mandibular condyle, by means of micro-computed tomography. Thirty-six female, 21 days old, C57BL/6 mice were randomly divided into two groups. Mice in the hard-diet control group were fed standard hard rodent pellets for 8 weeks. The soft-diet group mice were given soft ground diets for 8 weeks and their lower incisors were shortened by cutting with a wire cutter twice a week to reduce incision. After 8 weeks all animals were killed after they were weighed. Following sacrifice, the right mandibular condyle was removed. High spatial resolution tomography was done with a Skyscan Micro-CT 1072. Cross-sections were scanned and three-dimensional images were reconstructed from 2D sections. Morphometric and nonmetric parameters such as bone volume(BV), bone surface(BS), total volume(TV), bone volume fraction(BV/TV), surface to volume ratio(BS/BV), trabecular thickness(Tb. Th.), structure model index(SMI) and degree of anisotropy(DA) were directly determined by means of the software package at the micro-CT system. From directly determined indices the trabecular number(Tb. N.) and trabecular separation(Tb. Sp.) were calculated according to parallel plate model of Parfitt et al.. After micro-tomographic imaging, the samples were decalcified, dehydrated, embedded and sectioned for histological observation. The results were as follow: 1. The bone volume fraction, trabecular thickness(Tb. Th.) and trabecular number(Tb. N.) were significantly decreased in the soft-diet group compared with that of the control group (p<0.05). 2. The trabecular separation(Tb. Sp.) was significantly increased in the soft-diet group(p<0.05). 3. There was no significant differences in the surface to volume ratio(BS/BV), structure model index(SMI) and degree of anisotropy(DA) between the soft-diet group and hard-diet control group (p>0.05). 4. Histological sections showed that the thickness of the proliferative layer and total cartilage thickness were significantly reduced in the soft-diet group.

  • PDF

Deviations of Implant Position between Pre- and Post-operation in Computer-guided Template-based Implant Placement (Computer-guided template를 이용한 임플란트 식립에서 술 전과 술 후 사이의 임플란트 위치에 따른 변위량 검사)

  • Kim, Won;Kim, Seung-Mi;Kim, Hyo-Jung;Song, Eun-Young;Lee, Si-Ho;Oh, Nam-Sik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.175-184
    • /
    • 2011
  • With a development of implant restoration technique, there are increasing use of computer-guided system for edentulous patients. It was carried out simulated operation based on CT information about patient's bone quantity, quality and anatomical landmark. However, there are some difference between the programmed implant and post-operative implant about it's position. If the deviation was severe, it could happen a failure of 'passive fit' and not suited for path of implant restoration. The aim of this presentation is to evaluate about a degree of deviations between programmed implant and post-operative implant. Five patients treated by 'NobelGuide' system (Nobel Biocare AB, G$\ddot{o}$teborg, Sweden) in Department of Prosthodontics, Inha University were included in this study. The patients were performed CT radiograph taking and intra-oral impression taking at pre-operation. Based on CT images and study model, surgical stent was produced by NobelBiocareTM. To fabricated a pre-operative study model, after connected lab analog to surgical template, accomplished a pre-operative model using type 4 dental stone. At final impression, a post-operative study model was fabricated in the conventional procedures. Each study model was performed CT radiograph taking. Based on CT images, each implant was simulated in three dimensional position using $Procera^{(R)}$ software (Procera Software Clinical Design Premium, version 1.5; Nobel Biocare AB). In 3D simulated model, length and angulation between each implant of both pre- and post-operative implants were measured and recorded about linear and angular deviation between pre-and post-operative implants. A total of 24 implants were included in this study and 58 inter-implant sites between each implant were measured about linear and angular deviations. In the linear deviation a mean deviation of 0.41 mm (range 0~1.7 mm) was reported. In the angular deviation, a mean deviation was $1.99^{\circ}$ (range $0^{\circ}{\sim}6.7^{\circ}$). It appears that the both linear and angular mean deviation value were well acceptable to application of computer-guided implant system.

Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions (계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가)

  • Uran Chung;Jinyoung Rhee;Miae Kim;Soo-Jin Sohn
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.80-98
    • /
    • 2023
  • This study explores the effectiveness of various data preprocessing algorithms for improving subseasonal to seasonal (S2S) climate predictions from six climate forecast models and their Multi-Model Ensemble (MME) using a deep learning-based postprocessing model. A pipeline of data transformation algorithms was constructed to convert raw S2S prediction data into the training data processed with several statistical distribution. A dimensionality reduction algorithm for selecting features through rankings of correlation coefficients between the observed and the input data. The training model in the study was designed with TimeDistributed wrapper applied to all convolutional layers of U-Net: The TimeDistributed wrapper allows a U-Net convolutional layer to be directly applied to 5-dimensional time series data while maintaining the time axis of data, but every input should be at least 3D in U-Net. We found that Robust and Standard transformation algorithms are most suitable for improving S2S predictions. The dimensionality reduction based on feature selections did not significantly improve predictions of daily precipitation for six climate models and even worsened predictions of daily maximum and minimum temperatures. While deep learning-based postprocessing was also improved MME S2S precipitation predictions, it did not have a significant effect on temperature predictions, particularly for the lead time of weeks 1 and 2. Further research is needed to develop an optimal deep learning model for improving S2S temperature predictions by testing various models and parameters.

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF

Relationship Between Usage Needs Satisfaction and Commitment to Apparel Brand Communities: Moderator Effect of Apparel Brand Image (의류 브랜드 커뮤니티의 이용욕구 충족과 커뮤니티 몰입의 관계: 의류 브랜드 이미지의 조절효과)

  • Hong, Hee-Sook;Ryu, Sung-Min;Moon, Chul-Woo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.4
    • /
    • pp.51-89
    • /
    • 2007
  • INTRODUCTION Due to the high broadband internet penetration rate and its group-oriented culture, various types of online communities operate in Korea. This study use 'Uses and Gratification Approach, and argue that members' usage-needs satisfaction with brand community is an important factor for promoting community commitment. Based on previous studies identifying the effect of brand image on consumers' responses to various marketing stimuli, this study hypothesizes that brand image can be a moderate variable affecting the relationship between usage-needs satisfaction with brand community and members' commitment to brand community. This study analyzes the influence of usage-needs satisfaction on brand community commitment and how apparel brand image affects the relationships between usage-needs satisfactions and community commitments. The hypotheses of this study are proposed as follows. H1-3: The usage-needs satisfaction of apparel brand community (interest, transaction, relationship needs) influences emotional (H1), continuous (H2), and normative (H3) commitments to apparel brand communities. H4-6: Apparel brand image has a moderating effect on the relationship between usage-needs satisfaction and emotional (H4), continuous (H5), and normative (H6) commitments to apparel brand communities. METHODS Brand communities founded by non-company affiliates were excluded and emphasis was placed instead on communities created by apparel brand companies. Among casual apparel brands registered in 6 Korean portal sites in August 2003, a total of 9 casual apparel brand online communities were chosen, depending on the level of community activity and apparel brand image. Data from 317 community members were analyzed by exploratory factor analysis, moderated regression analysis, ANOVA, and scheffe test. Among 317 respondents answered an online html-type questionnaire, 80.5% were between 16 to 25 years old. There were a total of 150 respondents from apparel brand communities(n=3) recording higher-than-average brand image scores (Mean > 3.75) and a total of 162 respondents from apparel brand communities(n=6) recording lower-than-average brand image scores(Mean < 3.75). In this study, brand community commitment was measured by a 5-point Likert scale: emotional, continuous and normative commitment. The degree of usage-needs satisfaction (interest, transaction, relationship needs) was measured on a 5-point Likert scale. The level of brand image was measured by a 5-point Likert scale: strength, favorability, and uniqueness of brand associations. RESULTS In the results of exploratory factor analysis, the three usage-needs satisfactions with brand community were classified as interest, transaction, and relationship needs. Brand community commitment was also divided into the multi-dimensional factors: emotional, continuous, and normative commitments. The regression analysis (using a stepwise method) was used to test the influence of 3 independent variables (interest-needs satisfaction, transaction-needs, and relationship-needs satisfactions) on the 3 dependent variables (emotional, continuous and normative commitments). The three types of usage-needs satisfactions are positively associated with the three types of commitments to apparel brand communities. Therefore, hypothesis 1, 2, and 3 were significantly supported. Moderating effects of apparel brand image on the relationship between usage-needs satisfaction and brand community commitments were tested by moderated regression analysis. The statistics result showed that the influence of transaction-needs on emotional commitment was significantly moderated by apparel brand image. In addition, apparel brand image had moderating effects on the relationship between relationship-needs satisfaction and emotional, continuous and normative commitments to apparel brand communities. However, there were not significant moderate effects of apparel brand image on the relationships between interest-needs satisfaction and 3 types of commitments (emotional, continuous and normative commitments) to apparel brand communities. In addition, the influences of transaction-needs satisfaction on 2 types of commitments (continuous and normative commitments) were not significantly moderated by apparel brand image. Therefore, hypothesis 4, 5 and 6 were partially supported. To explain the moderating effects of apparel brand image, four cross-tabulated groups were made by averages of usage-needs satisfaction (interest-needs satisfaction avg. M=3.09, transaction-needs satisfaction avg. M=3.46, relationship-needs satisfaction M=1.62) and the average apparel brand image (M=3.75). The average scores of commitments in each classified group are presented in Tables and Figures. There were significant differences among four groups. As can be seen from the results of scheffe test on the tables, emotional commitment in community group with high brand image was higher than one in community group with low brand image when transaction-needs satisfaction was high. However, when transaction-needs satisfaction was low, there was not any difference between the community group with high brand image and community group with low brand image regarding emotional commitment to apparel brand communities. It means that emotional commitment didn't increase significantly without high satisfaction of transaction-needs, despite the high apparel brand image. In addition, when apparel brand image was low, increase in transaction-needs did not lead to the increase in emotional commitment. Therefore, the significant relationship between transaction-needs satisfaction and emotional commitment was found in only brand communities with high apparel brand image, and the moderating effect of apparel brand image on this relationship between two variables was found in the communities with high satisfaction of transaction-needs only. Statistics results showed that the level of emotional commitment is related to the satisfaction level of transaction-needs, while overall response is related to the level of apparel brand image. We also found that the role of apparel brand image as a moderating factor was limited by the level of transaction-needs satisfaction. In addition, relationship-needs satisfaction brought significant increase in emotional commitment in both community groups (high and low levels of brand image), and the effect of apparel brand image on emotional commitment was significant in both community groups (high and low levels of relationship-needs satisfaction). Especially, the effect of brand image was greater when the level of relationship-needs satisfaction was high. in contrast, increase in emotional commitment responding to increase in relationship-needs satisfaction was greater when apparel brand image is high. The significant influences of relationship-needs satisfaction on community commitments (continuous and normative commitments) were found regardless of apparel brand image(in both community groups with low and high brand image). However, the effects of apparel brand image on continuous and normative commitments were found in only community group with high satisfaction level of relationship-needs. In the case of communities with low satisfaction levels of relationship needs, apparel brand image marginally increases continuous and normative commitments. Therefore, we could not find the moderating effect of apparel brand image on the relationship between relationship-needs satisfaction and continuous and normative commitments in community groups with low satisfaction levels of relationship needs, CONCLUSIONS AND IMPLICATIONS From the results of this study, we draw several conclusions; First, the increases in usage-needs satisfactions through apparel brand communities result in the increases in commitments to apparel brand communities, wheres the degrees of such relationship depends on the level of apparel brand image. That is, apparel brand image is a moderating factor strengthening the relationship between usage-needs satisfaction and commitment to apparel brand communities. In addition, the effect of apparel brand image differs, depending on the level and types of community usage-needs satisfactions. Therefore, marketers of apparel brand companies must determine the appropriate usage-needs, depending on the type of commitment they wish to increase and the level of their apparel brand image, to promote member's commitments to apparel brand communities. Especially, relationship-needs satisfaction was very important factor for increasing emotional, continuous and normative commitments to communities. However the level of relationship-needs satisfaction was lower than interest-needs and transaction-needs. satisfaction. According to previous study on apparel brand communities, relationship-need satisfaction was strongly related to member's intention of participation in their communities. Therefore, marketers need to develope various strategies in order to increase the relationship- needs as well as interest and transaction needs. In addition, despite continuous commitment was higher than emotional and normative commitments, all types of commitments to apparel brand communities had scores lower than 3.0 that was mid point in 5-point scale. A Korean study reported that the level of members' commitment to apparel brand community influenced customers' identification with a brand and brand purchasing behavior. Therefore, marketers should try to increase members' usage-needs satisfaction and apparel brand image as the necessary conditions for bringing about community commitments. Second, marketers should understand that they should keep in mind that increasing the level of community usage needs (transaction and relationship) is most effective in raising commitment when the level of apparel brand image is high, and that increasing usage needs (transaction needs) satisfaction in communities with low brand image might not be as effective as anticipated. Therefore, apparel companies with desirable brand image such as luxury designer goods firms need to create formal online brand communities (as opposed to informal communities with rudimentary online contents) to satisfy transaction and relationship needs systematically. It will create brand equity through consumers' increased emotional, continuous and normative commitments. Even though apparel brand is very famous, emotional commitment to apparel brand communities cannot be easily increased without transaction-needs satisfaction. Therefore famous fashion brand companies should focus on developing various marketing strategies to increase transaction-needs satisfaction.

  • PDF

Lower Limbs Muscle Comparative Research for Verification Effect of Rehabilitation Training Program of Total Hip Arthroplasty (재활운동 프로그램에 참가한 엉덩인공관절 수술자의 하지근력 변화에 대한 비교연구)

  • Jin, Young-Wan
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.543-548
    • /
    • 2010
  • The purpose of this study was to examine the differences in kinetics between 6 months of rehabilitation training and 12 months of rehabilitation training after total hip arthroplasty. 10 unilateral THA participants performed kinetic tests. Three dimensional kinematics and hip flexors and abductors electromyography (EMG) were collected during each trial. T-test was used for statistical analysis (p<0.05). There was no significant difference in EMG data between the two groups, but the mean comparison EMG data was higher in the 12 months rehabilitation training group than the 6 months rehabilitation training group. The moment value was found with motion-dependent interaction analyzing method which was used by Feltner and Dapena. There was no significant difference between moment values of the two groups. There was no significant difference between ground reaction forces of the two groups; however, there were some differences shown in Fz (vertical reaction force) between the two groups ($892{\pm}104\;N$, $820{\pm}87\;N$). The first peak impact force was about 9% lower in the 12 months group compared to the 6 months group. The second peak active force was nearly equal between the two groups. More research is necessary to determine exactly what constitutes optimal rehabilitation training biomechanics for patients with total hip arthroplasty.

A Study on the Buyer's Decision Making Models for Introducing Intelligent Online Handmade Services (지능형 온라인 핸드메이드 서비스 도입을 위한 구매자 의사결정모형에 관한 연구)

  • Park, Jong-Won;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.119-138
    • /
    • 2016
  • Since the Industrial Revolution, which made the mass production and mass distribution of standardized goods possible, machine-made (manufactured) products have accounted for the majority of the market. However, in recent years, the phenomenon of purchasing even more expensive handmade products has become a noticeable trend as consumers have started to acknowledge the value of handmade products, such as the craftsman's commitment, belief in their quality and scarcity, and the sense of self-esteem from having them,. Consumer interest in these handmade products has shown explosive growth and has been coupled with the recent development of three-dimensional (3D) printing technologies. Etsy.com is the world's largest online handmade platform. It is no different from any other online platform; it provides an online market where buyers and sellers virtually meet to share information and transact business. However, Etsy.com is different in that shops within this platform only deal with handmade products in a variety of categories, ranging from jewelry to toys. Since its establishment in 2005, despite being limited to handmade products, Etsy.com has enjoyed rapid growth in membership, transaction volume, and revenue. Most recently in April 2015, it raised funds through an initial public offering (IPO) of more than 1.8 billion USD, which demonstrates the huge potential of online handmade platforms. After the success of Etsy.com, various types of online handmade platforms such as Handmade at Amazon, ArtFire, DaWanda, and Craft is ART have emerged and are now competing with each other, at the same time, which has increased the size of the market. According to Deloitte's 2015 holiday survey on which types of gifts the respondents plan to buy during the holiday season, about 16% of U.S. consumers chose "homemade or craft items (e.g., Etsy purchase)," which was the same rate as those for the computer game and shoes categories. This indicates that consumer interests in online handmade platforms will continue to rise in the future. However, this high interest in the market for handmade products and their platforms has not yet led to academic research. Most extant studies have only focused on machine-made products and intelligent services for them. This indicates a lack of studies on handmade products and their intelligent services on virtual platforms. Therefore, this study used signaling theory and prior research on the effects of sellers' characteristics on their performance (e.g., total sales and price premiums) in the buyer-seller relationship to identify the key influencing e-Image factors (e.g., reputation, size, information sharing, and length of relationship). Then, their impacts on the performance of shops within the online handmade platform were empirically examined; the dataset was collected from Etsy.com through the application of web harvesting technology. The results from the structural equation modeling revealed that the reputation, size, and information sharing have significant effects on the total sales, while the reputation and length of relationship influence price premiums. This study extended the online platform research into online handmade platform research by identifying key influencing e-Image factors on within-platform shop's total sales and price premiums based on signaling theory and then performed a statistical investigation. These findings are expected to be a stepping stone for future studies on intelligent online handmade services as well as handmade products themselves. Furthermore, the findings of the study provide online handmade platform operators with practical guidelines on how to implement intelligent online handmade services. They should also help shop managers build their marketing strategies in a more specific and effective manner by suggesting key influencing e-Image factors. The results of this study should contribute to the vitalization of intelligent online handmade services by providing clues on how to maximize within-platform shops' total sales and price premiums.