• Title/Summary/Keyword: 3D (3Dimensional)

Search Result 6,384, Processing Time 0.044 seconds

Facial asymmetry: Critical element of clinical successful treatment (임상가를 위한 특집 4 - 안면비대칭의 외과적 교정)

  • Hong, Jongrak
    • The Journal of the Korean dental association
    • /
    • v.52 no.10
    • /
    • pp.623-632
    • /
    • 2014
  • The facial asymmetries include maxillary, mandibular, and chin asymmetries, although the most common deformity is primarily in the mandible. Common causes of this type of asymmetry can include asymmetric growth of the condyle or the mandible. In these patients, the location of the Me would be deviated to the shorter side because of the asymmetric growth of the mandible, and, commonly, the maxillary occlusal plane would be tilted toward the deviated side because the maxilla likely grows asymmetrically according to the pattern of asymmetric mandibular growth. Three-dimensional CT images are ideal for evaluating the size and location of anatomic structures, and such reconstructed images allow the use of software that can show anatomic structures from numerous angles, allowing actual measurements of distances and angles without problems of magnification, distortion, or superimposition caused by 2-dimensional imaging. In the present study using 3D-CT imaging, the 8 parameters, including measurements of the upper midline deviation, maxillary canting in the canine and first molar regions, width of the upper arch, width of the mandible at the Go, vertical length of the ramus, inclination of the ramus, and deviation of the Me were easily measured. The dentition should be orthodontically decompensated and dental midline should ensure incisor midlines positioned in the midline of each jaw before surgical correction. Surgical correction could be considered such as canting or yawing correction in the frontal or horizontal aspect, respectively.

Vision-based Real-Time Two-dimensional Bar Code Detection System at Long Range (비전 기반 실시간 원거리 2차원 바코드 검출 시스템)

  • Yun, In Yong;Kim, Joong Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.89-95
    • /
    • 2015
  • In this paper, we propose a real-time two-dimensional bar code detection system even at long range using a vision technique. We first perform short-range detection, and then long-range detection if the short-range detection is not successful. First, edge map generation, image binarization, and connect component labeling (CCL) are performed in order to select a region of interest (ROI). After interpolating the selected ROI using bilinear interpolation, a location symbol pattern is detected as the same as for short-range detection. Finally, the symbol pattern is arranged by applying inverse perspective transformation to localize bar codes. Experimental results demonstrate that the proposed system successfully detects bar codes at two or three times longer distance than existing ones even at indoor environment.

Stress Tolerance of Bifidobacterium infantis ATCC 27920 to Mild-heat Adaptation

  • Kang, Seok-U;Kim, Young-Hoon;Cho, In-Shick;Kang, Ja-Heon;Chun, Il-Byung;Kim, Kwang-Hyun;Oh, Se-Jong
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.249-252
    • /
    • 2009
  • Two-dimensional gel electrophoresis (2-DE) was employed to assess the thermo-tolerance characteristics of Bifrdobacterium infantis ATCC 27920 to mild heat adaptation. When exposed to various heat levels, pH, and hydrogen peroxide ($H_2O_2$) stress conditions, B. infantis ATCC 27920 exhibited high level of stress resistance. Under mild-heat treatment ($46^{\circ}C$), no significant change in viability level was observed after 2 hr. Interestingly, improved viability was observed in mild-heat adapted ($46^{\circ}C$ for 1 hr) cultures exposed to $55^{\circ}C$, in comparison to control experiments. Viability was not affected by pH, bile, and $H_2O_2$ stress conditions. 2-DE analysis revealed those mild-heat adaptation up-regulated 4 proteins and down-regulated 3 proteins. Among these protein spots, isopropyhnalate dehydratase (leuD), glycosyltransferase (glgA), and ribosomal protein L5 (rp1E) were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALD1-TOF/MS).

The Method for Estimating Stereoscopic Object Position with Horizontal-Moving Camera (수평이동방식 입체카메라의 입체영상의 결상 위치 추정 방법)

  • Lim, Young-Tae;Kim, Nam;Kwon, Ki-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.532-536
    • /
    • 2006
  • The position of stereoscopic objects is an important parameter to induce three-dimensional effects such as convergence control and image distortions. There are three kinds of stereoscopic cameras : Parallel, Toed-in, and Horizontal-Moving cameras. In this paper we proposed the method for estimating stereoscopic object position with a horizontal-moving camera. In the previous methods, viewing angle ratios are used to estimate the object positions. Our method based on the horizontal movements of the camera to estimate the positions. Using geometrical models of shooting and display we experimented with two methods. Results of experiments showed the distance of stereoscopic objects on virtual screen related to horizontal movement.

Long Distance and High Resolution Three-Dimensional Scanning LIDAR with Coded Laser Pulse Waves (레이저 펄스 부호화를 이용한 원거리 고해상도 3D 스캐닝 라이다)

  • Kim, Gunzung;Park, Yongwan
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.133-142
    • /
    • 2016
  • This paper presents the design and simulation of a three-dimensional pixel-by-pixel scanning light detection and ranging (LIDAR) system with a microelectromechanical system (MEMS) scanning mirror and direct sequence optical code division multiple access (DS-OCDMA) techniques. It measures a frame with $848{\times}480$ pixels at a refresh rate of 60 fps. The emitted laser pulse waves of each pixel are coded with DS-OCDMA techniques. The coded laser pulse waves include the pixel's position in the frame, and a checksum. The LIDAR emits the coded laser pulse waves periodically, without idle listening time to receive returning light at the receiver. The MEMS scanning mirror is used to deflect and steer the coded laser pulse waves to a specific target point. When all the pixels in a frame have been processed, the travel time is used by the pixel-by-pixel scanning LIDAR to generate point cloud data as the measured result.

Three-dimensional MHD modeling of a CME propagating through a solar wind

  • An, Jun-Mo;Inoue, Satoshi;Magara, Tetsuya;Lee, Hwanhee;Kang, Jihye;Kim, Kap-Sung;Hayashi, Keiji;Tanaka, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.70.2-70.2
    • /
    • 2014
  • We developed a three-dimensional (3D) magnetohydrodynamic (MHD) simulation code to reproduce the structure of a solar wind and the propagation of a coronal mass ejection (CME) through it. This code is constructed by a finite volume method based on a total variation diminishing (TVD) scheme using an unstructured grid system (Tanaka 1994). The grid system can avoid the singularity arising in the spherical coordinate system. In this study, we made an improvement of the code focused on the propagation of a CME through a solar wind, which extends a previous work done by Nakamizo et al. (2009). We first reconstructed a solar wind in a steady state from physical values obtained at 50 solar radii away from the Sun via an MHD tomography applied to interplanetary scintillation (IPS) data (Hayashi et al. 2003). We selected CR2057 and inserted a spheromak-type CME (Kataoka et al. 2009) into a reconstructed solar wind. As a result, we found that our simulation well captures the velocity, temperature and density profiles of an observed solar wind. Furthermore, we successfully reproduce the general characteristics of an interplanetary coronal mass ejection (ICME) obtained by the Helios 1/2 spacecraft (R. J. FORSYTH et al. 2006).

  • PDF

PILOT INJECTION OF DME FOR IGNITION OF NATURAL GAS AT DUAL FUEL ENGINE-LIKE CONDITIONS

  • MORSY M. H.;AHN D. H.;CHUNG S. H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The ignition delay of a dual fuel system has been numerically investigated by adopting a constant volume chamber as a model problem simulating diesel engine relevant conditions. A detailed chemical kinetic mechanism, consisting of 28 species and 135 elementary reactions, of dimethyl ether (DME) with methane ($CH_{4}$) sub-mechanism has been used in conjunction with the multi-dimensional reactive flow KIVA-3V code to simulate the autoignition process. The start of ignition was defined as the moment when the maximum temperature in the combustion vessel reached to 1900 K with which a best agreement with existing experiment was achieved. Ignition delays of liquid DME injected into air at various high pressures and temperatures compared well with the existing experimental results in a combustion bomb. When a small quantity of liquid DME was injected into premixtures of $CH_{4}$/air, the ignition delay times of the dual fuel system are longer than that observed with DME only, especially at higher initial temperatures. The variation in the ignition delay between DME only and dual fuel case tend to be constant for lower initial temperatures. It was also found that the predicted values of the ignition delay in dual fuel operation are dependent on the concentration of the gaseous $CH_{4}$ in the chamber charge and less dependent on the injected mass of DME. Temperature and equivalence ratio contours of the combustion process showed that the ignition commonly starts in the boundary at which near stoichiometric mixtures could exists. Parametric studies are also conducted to show the effect of additive such as hydrogen peroxide in the ignition delay. Apart from accurate predictions of ignition delay, the coupling between multi-dimensional flow and multi-step chemistry is essential to reveal detailed features of the ignition process.

Design of 1 MW High-temperature Superconducting Motor with Water-cooled Armature (수냉식 전기자로 구성된 1 MW 고온초전도 동기모터의 설계)

  • Baik, S.K.;Lee, J.D.;Kim, S.H.;Lee, E.Y.;Sohn, M.H.;Kwon, Y.K.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Lee, J.Y.;Hong, J.P.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1258-1260
    • /
    • 2005
  • Superconducting synchronous motors and generators have the field coil composed of superconductor with almost zero resistance at superconducting state. Therefore, co or loss at the conventional field coil is eliminated and the superconducting machine gets higher efficiency. The armature coil of the superconducting machine is composed of cower wire and supported by non-magnetic material such as FRP(Fiber Reinforced Plastic). Although a fully-superconducting machine with superconducting armature coil has been researched, it was not developed toward industrial application because of AC transporting loss and difficulty in construction of the cooling structure and so on. This paper contains the design procedure of a 1 MW superconducting synchronous motor using high-temperature superconductor only for the field coil. Especially, the armature coil is designed by water-cooling in order to dissipate Joule heat easily. Moreover, 3-dimensional electromagnetic design is conducted to get a proper design result and reduce design errors from 2-dimensional approach.

  • PDF

Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter (비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구)

  • Kim, Dongeun;Poguluri, Sunny Kumar;Ko, Haeng Sik;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.

The Evaluation of Axial Stress in Continuous Welded Rails via Three-Dimensional Bridge-Track Interaction

  • Manovachirasan, Anaphat;Suthasupradit, Songsak;Choi, Jun-Hyeok;Kim, Bum-Joon;Kim, Ki-Du
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1617-1630
    • /
    • 2018
  • The crucial differences between conventional rail with split-type connectors and continuous welded rails are axial stress in the longitudinal direction and stability, as well as other issues generated under the influence of loading effects. Longitudinal stresses generated in continuously welded rails on railway bridges are strongly influenced by the nonlinear behavior of the supporting system comprising sleepers and ballasts. Thus, the track structure interaction cannot be neglected. The rail-support system mentioned above has properties of non-uniform material distribution and uncertainty of construction quality. The linear elastic hypothesis therefore cannot correctly evaluate the stress distribution within the rails. The aim of this study is to apply the nonlinear finite element method using the nonlinear coupling interface between the track and structural model and to illustrate the welded rail behavior under the loading effect and uncertain factors of the ballast. Numerical results of nonlinear finite analysis with a three-dimensional solid and frame element model are presented for a typical track-bridge system. A composite plate girder, modeled by solid and shell elements, is also analyzed to consider the behavior of the welded rail. The analysis result showed buckling under the independent calculations of load cases, including 'temperature change', 'bending of the supporting structure', and 'braking' of the railway vehicle. A parametric study of the load combination method and the loading sequence is also included in this analysis.