• Title/Summary/Keyword: 3D (3Dimensional)

Search Result 6,384, Processing Time 0.038 seconds

A Study on the Compensation of Thermal Errors for Phase Measuring Profilometry (PMP 형상 측정법의 열 변위 보정에 관한 연구)

  • Kim, Gi-Seung;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.598-603
    • /
    • 2019
  • Three-dimensional shape measurement technology is used in various industries. Among them, optical three-dimensional shape measurement techniques based on the optical trigonometry are mainly used in the field of semiconductor product inspection, where large quantities of three-dimensional shape measurements are made daily in factories and fine measurements are also required. The light source and the drive circuit, which are components of three-dimensional measurement equipment based on this optical trigonometry, produce heat generated by prolonged operation, and may be exposed to conditions where the ambient temperature is not constant, resulting in temperature-induced measurement errors. In this study, the compensation method of the Thermal Errors for Phase Measuring Profilometry is proposed. Three-Dimensional Shape Measurement Equipment based on Phase Measuring Profilometry is implemented to measure the height of an object and ambient temperature for 10 Hours, and a regression line was obtained line by making simple linear regression using measured temperature and height values. This regression line was used to correct the error of the height measurement according to the temperature, and thermal error was from 139.88 um(Micrometer) to 13.12 um.

Singular Value Decomposition based Noise Reduction Technique for Dynamic PET I mage : Preliminary study (특이값 분해 기반 Dynamic PET 영상의 노이즈 제거 기법 : 예비 연구)

  • Pyeon, Do-Yeong;Kim, Jung-Su;Baek, Cheol-Ha;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.227-236
    • /
    • 2016
  • Dynamic positron emission tomography(dPET) is widely used medical imaging modality that can provide both physiological and functional neuro-image for diagnosing various brain disease. However, dPET images have low spatial-resolution and high noise level during spatio-temporal analysis (three-dimensional spatial information + one-dimensional time information), there by limiting clinical utilization. In order to overcome these issues for the spatio-temporal analysis, a novel computational technique was introduced in this paper. The computational technique based on singular value decomposition classifies multiple independent components. Signal components can be distinguished from the classified independent components. The results show that signal to noise ratio was improved up to 30% compared with the original images. We believe that the proposed computational technique in dPET can be useful tool for various clinical / research applications.

Effective material properties of radially poled piezoelectric ring transducer for analysis of tangentially poled piezoelectric ring (원주 분극 압전 링 트랜스듀서 해석을 위한 방사 분극 링 유효 물성 도출)

  • Lee, Haksue;Cho, Cheeyoung;Park, Seongcheol;Cho, Yo-Han;Lee, Jeong-min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.184-192
    • /
    • 2019
  • Compared to 31-mode rings, 33-mode rings are highly utilized as wide bandwidth underwater acoustic transducers because the electro-mechanical coupling and piezoelectric constant d are high. On the other hand, the 31-mode ring is an axial symmetry structure, so it is possible to model it as a simple two-dimensional asymmetrical model for numerical analysis, but the 33-mode ring requires a three-dimensional numerical analysis. That is, a lot of computing resources and computation time are required. In this study, the effective material properties of an equivalent 31-mode ring were derived to simulate the electro-mechano-acoustical responses of the 33-mode ring transducer. Using the effective material properties derived from this study, a numerical analysis of rings in vacuum, air backed rings in water, and FFR (Free Flooded Ring) transducers were performed to compare the responses of 33-mode rings.

Comparison of digital models generated from three-dimensional optical scanner and cone beam computed tomography (3차원 광학 스캐너와 콘빔CT에서 생성된 디지털 모형의 비교)

  • Kwon, Hyuk-Jin;Kim, Kack-Kyun;Yi, Won-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.1
    • /
    • pp.60-69
    • /
    • 2016
  • Purpose: The objective of this study was to compare the accuracy of digital models from 3 dimentional (3D) optical scanner and cone beam computed tomography (CBCT). Materials and Methods: We obtained digital models from 11 pairs of stone casts using a 3D optical scanner and a CBCT, and compared the accuracy of the models. Results: The error range of average positive distance was 0.059 - 0.117 mm and negative distance was 0.066 - 0.146 mm. Statistically (P < 0.05), average positive distance was larger than $70{\mu}m$ and shorter than $100{\mu}m$, and that of negative distance was larger than $100{\mu}m$ and shorter than $120{\mu}m$. Conclusion: We concluded that the accuracy of digital models generated from CBCT is not appropriate to make final prostheses. However, it may be acceptable for provisional restorations and orthodontic diagnoses with respect to the accuracy of the digitalization.

A Study on the Transport of Soil Contaminant (A Development of FDM Model for 3-D Advection-Diffusion Equation with Decay Term) (토양 오염원의 이동에 관한 연구 (감쇠항이 있는 3차원 이송-확산 방정식의 수치모형 개발))

  • Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.179-189
    • /
    • 2012
  • To simulate the transport of pollutant, a numeric model for the advection-diffusion equation with the decay term is developed. This is finite-difference model using the implicit method (with the weight factor ${\alpha}$) and Gauss-Seidel SOR(successive over-relaxation). This model is compared to the analytical solutions (of simpler dimensional or boundary conditions), and in the condition of Peclet number < 5~20, the result shows stable condition, and Crank-Nicolson method (${\alpha}$=0.5) shows the more accurate results than fully-implicit method (${\alpha}$=1). The mass of advection, diffusion and decay is calculated and the error of mass balance is less than 3%. This model can evaluate the 3-D concentrations of the advection-diffusion and decay problems, but this model uses only the finite-difference method with the fixd grid system, so it can be effectively used in the problems with small Peclet numbers like the pollutant transport in groundwater.

Treatment outcome of hepatic re-irradiation in patients with hepatocellular carcinoma

  • Seol, Seung Won;Yu, Jeong Il;Park, Hee Chul;Lim, Do Hoon;Oh, Dongryul;Noh, Jae Myoung;Cho, Won Kyung;Paik, Seung Woon
    • Radiation Oncology Journal
    • /
    • v.33 no.4
    • /
    • pp.276-283
    • /
    • 2015
  • Purpose: We evaluated the efficacy and toxicity of repeated high dose 3-dimensional conformal radiation therapy (3D-CRT) for patients with unresectable hepatocellular carcinoma. Materials and Methods: Between 1998 and 2011, 45 patients received hepatic re-irradiation with high dose 3D-CRT in Samsung Medical Center. After excluding two ineligible patients, 43 patients were retrospectively reviewed. RT was delivered with palliative or salvage intent, and equivalent dose of 2 Gy fractions for ${\alpha}/{\beta}=10Gy$ ranged from $31.25Gy_{10}$ to $93.75Gy_{10}$ (median, $44Gy_{10}$). Tumor response and toxicity were evaluated based on the modified Response Evaluation Criteria in Solid Tumors criteria and the Common Terminology Criteria for Adverse Events (CTCAE) ver. 4.0. Results: The median follow-up duration was 11.2 months (range, 4.1 to 58.3 months). An objective tumor response rate was 62.8%. The tumor response rates were 81.0% and 45.5% in patients receiving ${\geq}45Gy_{10}$ and $<45Gy_{10}$, respectively (p = 0.016). The median overall survival (OS) of all patients was 11.2 months. The OS was significantly affected by the Child-Pugh class as 14.2 months vs. 6.1 months (Child-Pugh A vs. B, p < 0.001), and modified Union for International Cancer Control (UICC) T stage as 15.6 months vs. 8.3 months (T1-3 vs. T4, p = 0.004), respectively. Grade III toxicities were developed in two patients, both of whom received ${\geq}50Gy_{10}$. Conclusion: Hepatic re-irradiation may be an effective and tolerable treatment for patients who are not eligible for further local treatment modalities, especially in patients with Child-Pugh A and T1-3.

Correction of mandibular ramus height with frontal and lateral ramal inclinations in cephalograms and its effects on diagnostic accuracy of asymmetry (2차원 방사선 규격사진에서 하악골 상행지 고경의 보정분석에 관한 3차원 CT 영상 연구)

  • Hwang, Hyeon-Shik;Kim, Hyung-Min;Lee, Ki-Heon;Lim, Hoi-Jeong
    • The korean journal of orthodontics
    • /
    • v.37 no.5
    • /
    • pp.319-330
    • /
    • 2007
  • Defining right and left side differences in mandibular ramus height is one of the key elements in the diagnosis of facial asymmetry. The purpose of the present study was to evaluate the effect of correction of ramus height with frontal and lateral ramal inclinations (FRI and LRI) in 2-dimensional cephalograms and observe how this affects the diagnostic accuracy of asymmetry. Methods: Frontal and lateral cephalograms were obtained in 40 individuals with chin deviation. FRI and LRI were measured on each side and ramus height measurement was corrected with these inclinations using Pythagorean's theorem. The results of diagnosis before and after correction on cephalograms were compared with the results in 3D CT images. Results: Both FRI and LRI showed greater values in the contralateral side than in the chin-deviated side and these contributed to an increase in the right and left side ramus height differences. After comparison of diagnostic results before and after correction on cephalograms with the results on 3D CT images, the sensitivity increased significantly (from 74 to 94 %) whereas the specificity decreased (from 44 to 22 %). Overall accuracy increased from 68 to 78 % with the correction using FRI and LRI. Conclusions: The results of the present study indicate that correction of ramus height with FRI and LRI is useful for an accurate diagnosis of facial asymmetry on frontal cephalograms.

A 3-D Measuring System of Thermoluminescence Spectra and Thermoluminescence of CaSO4 : Dy, P (열자극발광 스펙트럼의 3차원 측정 장치와 CaSO4 : Dy, P의 열자극발광)

  • Lee, Jung-Il;Moon, Jung-Hak;Kim, Douk-Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 2001
  • In this paper, a three-dimensional measuring system of thermoluminescence(TL) spectra based on temperature, wavelength and luminescence intensity was introduced. The system was composed of a spectrometer, temperature control unit for thermal stimulation, photon detector and personal computer for control the entire system. Temperature control was achieved by using feedback to ensure a linear-rise in the sample temperature. Digital multimeter(KEITHLEY 195A) measures the electromotive force of Copper-Constantan thermocouple and then transmits the data to the computer through GPIB card. The computer converts this signal to temperature using electromotive force-temperature table in program, and then control the power supply through the D/A converter. The spectrometer(SPEX 1681) is controlled by CD-2A, which is controlled by the computer through RS-232 communication port. For measuring the luminescence intensity during the heating run, the electrometer(KEITHLEY 617) measures the anode current of photomultiplier tube(HAMAMATSU R928) and transmits the data to computer through the A/D converter. And, we measured and analyzed thermoluminescence of $CaSO_4$ : Dy, P using the system. The measuring range of thermoluminescence spectra was 300K-575K and 300~800 nm, $CaSO_4$ : Dy. P was fabricated by the Yamashita's method in Korea Atomic Energy Research Institute(KAERI) for radiation dosimeter. Thermoluminesce spectra of the $CaSO_4$ : Dy, P consist of two main peak at temperature of $205^{\circ}C$, wavelength 476 nm and 572 nm and with minor ones at 658 nm and 749 nm.

  • PDF

The Development and its Application of Diagnostic Technique for Corrosion Defect of U-type Open Rack Vaporizer (개방형 U-type 기화기의 부식손상부 진단기법 개발 및 적용)

  • Jang S. Y.;Lee S. M.;Oh B. T.;Kho Y. T.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.45-50
    • /
    • 2001
  • Open rack vaporizer (ORV) has been used in liquefied natural gas (LNG) receiving terminal in order to vaporize LNG into natural gas (NG) by heat exchange with seawater The U-type ORV which had been operated with seawater for 14 years is one of the important utilities of the gas production and the weld part of tube connected with header_ pipe had experienced many corrosion problems. To elucidate the cause of corrosion at weld part of vaporizer tube, corrosion potentials were compared by parts. This study concerns on the measurement of corrosion pit depth using non-destructive method and the evaluation of stress distribution in an aspect of safety with finite element analysis. In order to confirm the reliability of galvanic corrosion between weld parts and base metal, the measurement of corrosion potential by parts was conducted for 20 minutes in 3.5$\%$(wt.) NaCl solution. Many non-destructive methods were tried to measure the remaining thickness of vaporizer tube at fields. For general corrosion, tangential radiography test was confirmed as an effective method. In case of a fine corrosion pit, the shape of corrosion pit was reproduced using surface replication method. From collected data, stress distributions were quantitatively evaluated with 2-dimensional finite element method and the diagnostic evaluation on internal pressure of the U-type vaporizer could be made.

  • PDF

Internal Flow Analysis of Urea-SCR System for Passenger Cars Considering Actual Driving Conditions (운전 조건을 고려한 승용차용 요소첨가 선택적 촉매환원장치의 내부 유동 해석에 관한 연구)

  • Moon, Seong Joon;Jo, Nak Won;Oh, Se Doo;Lee, Ho Kil;Park, Kyoung Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.127-138
    • /
    • 2016
  • Diesel vehicles should be equipped with urea-selective catalytic reduction(SCR) system as a high-performance catalyst, in order to reduce harmful nitrogen oxide emissions. In this study, a three-dimensional Eulerian-Lagrangian CFD analysis was used to numerically predict the multiphase flow characteristics of the urea-SCR system, coupled with the chemical reactions of the system's transport phenomena. Then, the numerical spray structure was modified by comparing the results with the measured values from spray visualization, such as the injection velocity, penentration length, spray radius, and sauter mean diameter. In addition, the analysis results were verified by comparison with the removal efficiency of the nitrogen oxide emissions during engine and chassis tests, resulting in accuracy of the relative error of less than 5%. Finally, a verified CFD analysis was used to calculate the interanl flow of the urea-SCR system, thereby analyzing the characteristics of pressure drop and velocity increase, and predicting the uniformity index and overdistribution positions of ammonia.