• Title/Summary/Keyword: 3D (3Dimensional)

Search Result 6,384, Processing Time 0.035 seconds

The 3D Numerical Analysis on the Turbulent at 40° Crosswind, for the Predictions of Flight Stability at Take-off and Landing (이·착륙 비행 안정성 예측을 위한 측풍 40° 방향에 대한 3차원 수치해석)

  • Sheen, Dong-Jin;Kim, Do-Hyun;Park, Soo-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.179-189
    • /
    • 2012
  • The aim of this paper is to research the change in the turbulent flow and the AOA(Angle Of Attack) occurred by $40^{\circ}$ crosswind to the direction of runway through the three-dimensional numerical analysis and to predict the take-off and landing flight stability. As a result, the maximum amplitude of AOA variation on runway reached $2^{\circ}$ within 3 second because of the wake formed by the constructions in the vicinity of the airport, and the overall effects appeared as an irregular aperiodic forms. Additionally, it was observed that the layout and shape of the buildings effected on the strength of turbulence directly, and the rapid flow generated between the buildings changed into stronger wake and eventually expected that the flow raises serious take-off and landing flight instability.

The Relationship between the Distance and Kinematical Parameters of Javelin in Korean Male Javelin Throwers (한국 남자 창던지기 선수들의 창의 운동학적 요인과 기록과의 관계)

  • Kim, Woo-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.217-227
    • /
    • 2014
  • The purpose of this study was to investigate the relationship between distance and factors of javelin in korean male's javelin throwing. To accomplish this purpose, the analyzed trail selected total 29 trails (subjects 9) recorded more than 65 m in the 93rd National Sports Festival. The Kwon3D 3.1 version was used to obtain the three dimensional coordinates about the top, grip, end of javelin. And the kinematic data such as projection factors and direction angle of javelin calculated using Matlab2009a program. The statical analysis on the records (n=29) were used to Pearson's product moment correlation coefficient. There was a statistically positive relationship between the records and horizontal velocity (r=.866, ${\rho}$<.01), height (r=.541, ${\rho}$ <.001), height rate (r=.373, ${\rho}$ <.05) and horizontal displacement of javelin (r=.749, ${\rho}$ <.01), but the medial/lateral velocity showed a negative relationship to r=-.663 (${\rho}$ <.01). The attack and yaw angle showed not a significant relationship between the records, but the medial-lateral tilt (E1:r =-.557 [p<.01)] E2:r=-.629 [${\rho}$<.01], E3:r=-.528 [${\rho}$ <.01]) and attitude angle (E2:r=-.629 [[${\rho}$<.01], E3:r=-.619 [${\rho}$ <.01]) of javelin showed a negative relationship between the records, as well as the projection angle of javelin (r=-.419, ${\rho}$ <.05) showed a negative relationship between the records.

Finding Isolated Zones through Connectivity Relationship Analysis in Indoor Space (실내공간의 연결성 분석을 통한 고립지역 탐색)

  • Lee, Seul-Ji;Lee, Ji-Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.229-240
    • /
    • 2012
  • In Korea, u-City has been constructed as IT-based new city with introduction of the ubiquitous concept. However, most currently provided u-services are just monitoring services based on the USN(Ubiquitous Sensor Network) technology, so spatial analysis is insufficient. Especially, buildings have been rapidly constructed and expanded in multi-levels, and people spend a lot of time in indoor space, so indoor spatial analysis is necessary. Therefore, connectivity relationship in indoor space is analyzed using the topological data model. Topological relationships could be redefined due to the dynamic changes of environment in indoor space, and changes could have an effect on analysis results. In this paper, the algorithms of finding isolated zones is developed by analyzing connectivity relationship between space objects in built-environments after changes of environment in indoor space due to specific situation such as fire. And the system that visualizes isolated zones as well as three-dimensional data structure of indoor space is developed to get the analysis result by using the analysis algorithms.

Non-restraint Master Interface of Minimally Invasive Surgical Robot Using Hand Motion Capture (손동작 영상획득을 이용한 최소침습수술로봇 무구속 마스터 인터페이스)

  • Jang, Ik-Gyu
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.105-111
    • /
    • 2016
  • Introduction: Surgical robot is the alternative instrument that substitutes the difficult and precise surgical operation; should have intuitiveness operationally to transfer natural motions. There are limitations of hand motion derived from contacting mechanical handle in the surgical robot master interface such as mechanical singularity, isotropy, coupling problems. In this paper, we will confirm and verify the feasibility of intuitive Non-restraint master interface which tracking the hand motion using infra-red camera and only 3 reflective markers without the hardware handle for the surgical robot master interface. Materials & methods: We configured S/W and H/W system; arranged 6 infra-red cameras and attached 3 reflective markers on hands for measuring 3 dimensional coordinate then we find the 7 motions of grasp, yaw, pitch, roll, px, py, pz. And we connected Virtual-Master to the slave surgical robot(Laparobot) and observed the feasibility. To verify the result of motion, we compare the result of Non-restraint master and that of clinometer (and protractor) through measuring 0~180 degree, 10degree interval, 1000 samples and recorded standard deviation stands for error rate of the value. Results: We confirmed that the average angle values of Non-restraint master interface is accurately corresponds to the result of clinometer (and protractor) and have low error rates during motion. Investigation & Conclusion: In this paper, we confirmed the feasibility and accuracy of 3D Non-restraint master interface that can offer the intuitive motion of non-contact hardware handle. As a result, we can expect the high intuitiveness, dexterousness of surgical robot.

A Basic Study on Real Time 3D Location-Tracking in Ground and Underground Using MEMS Sensor (MEMS 센서를 이용한 지상 및 지하에서의 실시간 3차원 위치추적 기술에 관한 기초적 연구)

  • Seol, Munhyung;Jang, Yonggu;Jeon, Heungsoo;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In Korea, the number of mining operations are getting smaller. But buried accidents are on the increase every year. For this reason, it is important to safety management in construction process, especially the worker's safety. In the field of construction needs utilization of integration system according to purpose of utilization, particularly in underground construction sites utilizing is emphasized even more. The current element technologies of location tracking, sensors and wireless communication possible to utilize but it is still difficult to utilization of integration system in construction field because a study is not complete on commercialization and availability. In this study, for real time 3-dimensional management of ubiquitous construction site in ground and underground, measure data using MEMS sensor, EDM and DGPS in 2 test site. Also results were analysed by MATLAB. As a result, error is verification less than 3 meter that possible to distinguish with the naked eye and construct direction of study based on result of former.

Runoff simulation from paddy field using three-dimensional CFD and law of similarity (3차원 CFD와 상사법칙을 이용한 논에서의 유출 모의)

  • Shin, Sat-Byeol;Jun, Sang Min;Choi, Won;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.292-292
    • /
    • 2016
  • 논의 배수특성 분석은 물꼬 크기 및 개소수, 배수로 구성, 규모, 경사, 재질 등과 같은 물리적 특성 인자들의 영향으로 인해 일반적인 유역의 홍수량 산정을 위해 사용되는 수문학적 홍수추적 방법의 적용이 어렵다. 따라서 논에서의 유출을 모의하기 위해서는 수리학적 홍수추적 방법의 적용이 필요하며, 기존의 연구들은 대부분 1차원과 2차원의 수치 해석 기법으로 논의 유출 특성을 분석해왔다. 3차원 수치 해석 기법을 적용할 경우 1차원과 2차원에서 볼 수 없는 유동 특성 등을 파악할 수 있으며, 보다 정확한 유출 모의가 가능할 것으로 기대된다. 하지만 3차원 해석은 비교적 구조가 단순한 논에 적용하기에는 시간과 비용이 과도하게 소모된다는 단점이 있다. 한편, 상사법칙은 주로 실험의 스케일을 줄이기 위해 적용되어 왔다. 정확성에 대한 검증이 이루어진다면, 시간이 오래 걸리는 3차원 모델링에 상사법칙을 적용할 경우, 모의 시간을 단축시킬 수 있는 장점이 있을 것으로 사료된다. 따라서 본 연구에서는 3차원 수치 해석 모형인 FLOW-3D를 이용하여 논에서의 유출을 모의하고, 적용성을 평가하고자 한다. 또한 상사법칙을 이용하여 모의 시간을 단축할 수 있는 방법을 제시하고자 한다. 모의 대상으로 40m x 100m의 논 포장을 구성하였으며, 강우 및 관개에 따른 유출을 모의하였다. 모의 결과는 실측치 및 기존 연구의 결과와 비교하여 적용성을 평가하였다. 또한 수리학적 상사법칙을 적용하여 조건을 변화시켜가며 유출을 모의하였고, 모의 조건 및 모의 시간 변화에 따른 정확성을 분석하였다. 본 연구에서 제시한 방법은 논에서의 유출 모의의 정확성을 향상 시켜, 홍수 발생 시 농경지의 침수 대책 마련에 기여할 수 있을 것으로 기대된다.

  • PDF

Backbone 1H, 15N, and 13C Resonance Assignments and Secondary Structure of a Novel Protein OGL-20PT-358 from Hyperthermophile Thermococcus thioreducens sp. nov.

  • Wilson, Randall C.;Hughes, Ronny C.;Curto, Ernest V.;Ng, Joseph D.;Twigg, Pamela D.
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.437-440
    • /
    • 2007
  • $OGL-20P^T$-358 is a novel 66 amino acid residue protein from the hyperthermophile Thermococcus thioreducens sp. nov., strain $OGL-20P^T$, which was collected from the wall of the hydrothermal black smoker in the Rainbow Vent along the mid-Atlantic ridge. This protein, which has no detectable sequence homology with proteins or domains of known function, has a calculated pI of 4.76 and a molecular mass of 8.2 kDa. We report here the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments of $OGL-20P^T$-358. Assignments are 97.5% (316/324) complete. Chemical shift index was used to determine the secondary structure of the protein, which appears to consist of primarily ${\alpha}$-helical regions. This work is the foundation for future studies to determine the three-dimensional solution structure of the protein.

Analysis of Three Dimensional Position According to Photographing Position in Close-Range Digital Photogrammetry (촬영위치에 따른 근접수치사진측량의 3차원 위치 해석)

  • Lee, Jong-Chool;Seo, Dong-Ju;Roh, Tae-Ho;Nam, Shin
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.181-186
    • /
    • 2003
  • As the approach close-range digital photogrammetry has a variety of merits, the application of precision requiting fields is in Increase for its scope expansion. In the meantime, in case of photographic surveying by use of films, a lot of studies on experiment analysis and theoretical forecast models about a change of the exactness as per photographing coordinates have been conducted, but experiments about approach close-range digital photogrammetry are not enough yet. In consequence, this study has made photographing respectively by changing the photographic distance, converging angle, picturing direction by use of Rollei d7 metric and d7 metric$\^$5/ that is a measurement digital camera. And also in order to minimize the errors happened at the relative orientation, we have sorted out the prototype target that the relative orientation is automatically on the programming and have calculated RMSE by carrying out the bundle adjustment. We think that such a study could be used as very important basic data necessary in deriving the optimal photographic conditions by the close-range digital photogrammetry and in judging such a degree.

  • PDF

Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

  • Le, Tuyen Quang;Lee, Kwang-Soo;Park, Jin-Soon;Ko, Jin Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.257-268
    • /
    • 2014
  • In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR). First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D) turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flow-driven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

Reliable charge retention in nonvolatile memories with van der Waals heterostructures

  • Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.282.1-282.1
    • /
    • 2016
  • The remarkable physical properties of two-dimensional (2D) semiconducting materials such as molybdenum disulfide ($MoS_2$) and tungsten disulfide ($WS_2$) etc. have attracted considerable attentions for future high-performance electronic and optoelectronic devices. The ongoing studies of $MoS_2$ based nonvolatile memories have been demonstrated by worldwide researchers. The opening hysteresis in transfer characteristics have been revealed by different charge confining layer, for instance, few-layer graphene, $MoS_2$, metallic nanocrystal, hafnium oxide, and guanine. However, limited works built their nonvolatile memories using entirely of assembled 2D crystals. This is important in aspect view of large-scale manufacture and vertical integration for future memory device engineering. We report $WS_2$ based nonvolatile memories utilizing functional van der Waals heterostructure in which multi-layered graphene is encapsulated between $SiO_2$ and hexagonal boron nitride (hBN). We experimentally observed that, large memory window (20 V) allows to reveal high on-/off-state ratio (>$10^3$). Moreover, the devices manifest perfect retention of 13% charge loss after 10 years due to large graphene/hBN barrier height. Interestingly, the performance of our memories is drastically better than ever published work related to $MoS_2$ and black phosphorus flash memory technology.

  • PDF