• Title/Summary/Keyword: 3D (3Dimensional)

Search Result 6,385, Processing Time 0.047 seconds

Three-Dimensional Limit Equilibrium Stability Analysis of Spile-Reinforced Shallow Tunnel

    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.101-122
    • /
    • 1997
  • A spiting reinforcement system is composed of a series of radially installed reinforcing spites along the perimeter of the tunnel opening ahead of excavation. The reinforcing spill network is extended into the in-situ soil mass both radially and longitudinally The sailing reinforcement system has been successfully used for the construction of underground openings to reinforce weak rock formations on several occasions. The application of this spiting reinforcement system is currently extended to soft ground tunneling in limited occasions because of lack of reliable analysis and design methods. A method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground is presented. The shape of the potential failure wedge for the case of smile-reinforced shallow tunnel is assumed on the basis of the results of three dimensional finite element analyses. A criterion to differentiate the spill-reinforced shallow tunnel from the smile-reinforced deep tunnel is also formulated, where the tunnel depth, soil type, geometry of the tunnel and reinforcing spites, together with soil arching effects, are considered. To examine the suitability of the proposed method of threedimensional stability analysis in practice, overall stability of the spill-reinforced shallow tunnel at facing is evaluated, and the predicted safety factors are compared with results from twotimensional analyses. Using the proposed method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground, a parametric study is also made to investigate the effects of various design parameters such as tunnel depth, smile length and wadial spill spacing. With slight modifications the analytical method of threeiimensional stability analysis proposed may also be extended for the analysis and design of steel pipe reinforced multi -step grouting technique frequently used as a supplementary reinforcing method in soft ground tunnel construction.

  • PDF

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Investigation of Fatigue Strength and Prediction of Remaining Life in the Butt Welds Containing Penetration Defects (블완전용입 맞대기 용접재의 용입깊이에 따른 피로강도특성 및 잔류수명의 산출)

  • Han, Seung Ho;Han, Jeong Woo;Shin, Byung Chun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.423-435
    • /
    • 1998
  • In this paper fatigue strength reduction of butt weld with penetration defect, which can be seen frequently in the steel bridge, was assessed quantitatively. S-N curves were derived and investigated through the constant amplitude fatigue test of fully or partially penetrated welded specimen made of SWS490 steel. The fracture mechanical method was applied in order to calculate the remaining fatigue life of the partially penetrated butt welds. The fatigue limit of the fully penetrated butt welds was higher than that of category A in AASHTO's fatigue design curves, and the slope of S-N curves with 5.57 was stiffer than that of other result for welded part generally accepted as 3. The fatigue strength of the partially Penetrated butt weld was strongly influenced by the size of lack of penetration, D. It decreased drastically with increasing D from 3.9 to 14.7mm. Fracture behaviour of the partially penetrated butt weld is able to be explained obviously from the beach mark test that a semi-elliptical surface crack with small a/c ratio initiates at a internal weld root and propagates through the weld metal. To estimate the fatigue life of the partially penetrated butt weld with fracture mechanics, stress intensity factors K of 3-dimensional semi-elliptical crack were calculated by appling finite elements method and fracture mechanics parameters such as C and m were derived through the fatigue test of CT-specimen. As a result, the fatigue lives obtained by using the fracture mechanical method agreed well with the experimental results. The results were applied to Sung-Su bridge collapsed due to penetration defects in butt weld of vertical member.

  • PDF

Emotion Recognition Method Using Heart-Respiration Connectivity (심장과 호흡의 연결성을 이용한 감성인식 방법)

  • Lee, Dong Won;Park, Sangin;Whang, Mincheol
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.61-70
    • /
    • 2017
  • Physiological responses have been measured to recognize emotion. Although physiological responses have been interrelated between organs, their connectivities have been less considered for emotion recognizing. The connectivities have been assumed to enhance emotion recognition. Specially, autonomic nervous system is physiologically modulated by the interrelated functioning. Therefore, this study has been tried to analyze connectivities between heart and respiration and to find the significantly connected variables for emotion recognition. The eighteen subjects(10 male, age $24.72{\pm}2.47$) participated in the experiment. The participants were asked to listen to predetermined sound stimuli (arousal, relaxation, negative, positive) for evoking emotion. The bio-signals of heart and respiration were measured according to sound stimuli. HRV (heart rate variability) and BRV (breathing rate variability) spectrum were obtained from spectrum analysis of ECG (electrocardiogram) and RSP (respiration). The synchronization of HRV and BRV spectrum was analyzed according to each emotion. Statistical significance of relationship between them was tested by one-way ANOVA. There were significant relation of synchronization between HRV and BRV spectrum (synchronization of HF: F(3, 68) = 3.605, p = 0.018, ${\eta}^2_p=0.1372$, synchronization of LF: F(3, 68) = 5.075, p = 0.003, ${\eta}^2_p=0.1823$). HF difference of synchronization between ECG and RSP has been able to classify arousal from relaxation (p = 0.008, d = 1.4274) and LF's has negative from positive (p = 0.002, d = 1.7377). Therefore, it was confirmed that the heart and respiration to recognize the dimensional emotion by connectivity.

Analysis of Images According to the Fluid Velocity in Time-of-Flight Magnetic Resonance Angiography, and Contrast Enhancement Angiography

  • Kim, Eng-Chan;Heo, Yeong-Cheol;Cho, Jae-Hwan;Lee, Hyun-Jeong;Lee, Hae-Kag
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.185-191
    • /
    • 2014
  • In this study we evaluated that flow rate changes affect the (time of flight) TOF image and contrast-enhanced (CE) in a three-dimensional TOF angiography. We used a 3.0T MR System, a nonpulsatile flow rate model. Saline was used as a fluid injected at a flow rate of 11.4 cm/sec by auto injector. The fluid signal strength, phantom body signal strength and background signal strength were measured at 1, 5, 10, 15, 20 and 25-th cross-section in the experienced images and then they were used to determine signal-to-noise ratio and contrast-to-noise ratio. The inlet, middle and outlet length were measured using coronal images obtained through the maximum intensity projection method. As a result, the length of inner cavity was 2.66 mm with no difference among the inlet, middle and outlet length. We also could know that the magnification rate is 49-55.6% in inlet part, 49-59% in middle part and 49-59% in outlet part, and so the image is generally larger than in the actual measurement. Signal-to-noise ratio and contrast-to-noise ratio were negatively correlated with the fluid velocity and so we could see that signal-to-noise ratio and contrast-to-noise ratio are reduced by faster fluid velocity. Signal-to-noise ratio was 42.2-52.5 in 5-25th section and contrast-to-noise ratio was from 34.0-46.1 also not different, but there was a difference in the 1st section. The smallest 3D TOF MRA measure was $2.51{\pm}0.12mm$ with a flow velocity of 40 cm/s. Consequently, 3D TOF MRA tests show that the faster fluid velocity decreases the signal-to-noise ratio and contrast-to-noise ratio, and basically it can be determined that 3D TOF MRA and 3D CE MRA are displayed larger than in the actual measurement.

3D-QSAR Analysis on the Fungicidal Activity of N-phenyl-O-phenylthionocarbamate Analogues against Gray Mold (Botrytis cinerea) (잿빛곰팡이병균(Botrytis cinerea)에 대한 N-Phenyl-O-phenyl-thionocarbamate 유도체들의 살균활성에 관한 3D-QSAR 분석)

  • Sung, Nack-Do;Park, Kee-Han;Jang, Seok-Chan;Soung, Min-Kyu
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.59-66
    • /
    • 2007
  • Three dimensional quantitative structure-activity relationships (3D-QSARs) on the fungicidal activity of N-phenyl-O-phenylthionocarbamate analogues against resistant and sensitive gray mold (Botrytis cinerea) (RBC & SBC) were studied quantitatively using CoMFA and CoMSIA methods. The correlation coefficient and predict- ability of optimized CoMFA model with the atom based fit alignment were better ($r^2$ & $q^2=CoMFA{\gg}CoMSIA$) than that of CoMSIA model. And statistical values of the models on the fungicidal activity against SBC were showed higher ($r^2=SBC{\gg}RBC$) than that of RBC. In CoMFA models, steric field on the activity was more influenced than electrostatic field. And in case of CoMSIA models, the influence of CoMSIA field on the activity against RBC and SBC was differ from each other but the influence of H-bond donor field was same to the two fungi. It is revealed that the selectivity factor with CoMFA model on the fungicidal activity between the two fungi was caused on the difference of steric field. Therefore, it is predicted that the large steric field with meta- and para-substituents on the N-phenyl ring will be improved to the fungicidal activity with SBC.

Primary Solution Evaluations for Interpreting Electromagnetic Data (전자탐사 자료 해석을 위한 1차장 계산)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Song, Yoon-Ho;Lee, Ki-Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.361-366
    • /
    • 2009
  • Layered-earth Green's functions in electormagnetic (EM) surveys play a key role in modeling the response of exploration targets. They are computed through the Hankel transforms of analytic kernels. Computational precision depends upon the choice of algebraically equivalent forms by which these kemels are expressed. Since three-dimensional (3D) modeling can require a huge number of Green's function evaluations, total computational time can be influenced by computational time for the Hankel transform evaluations. Linear digital filters have proven to be a fast and accurate method of computing these Hankel transforms. In EM modeling for 3D inversion, electric fields are generally evaluated by the secondary field formulation to avoid the singularity problem. In this study, three components of electric fields for five different sources on the surface of homogeneous half-space were derived as primary field solutions. Moreover, reflection coefficients in TE and TM modes were produced to calculate EM responses accurately for a two-layered model having a sea layer. Accurate primary fields should substantially improve accuracy and decrease computation times for Green's function-based problems like MT problems and marine EM surveys.

Diagnostic efficacy of specialized MRI & clinical results of arthroscopic treatment in ankle soft tissue impingement syndrome (족근 관절 연부조직 충돌 증후군에서 MRI의 진단적 의의 및 관절경적 치료 결과)

  • Lee, Jin-Woo;Moon, Eun-Su;Kim, Sung-Jae;Hahn, Soo-Bong;Kang, Eung-Shick
    • Journal of Korean Foot and Ankle Society
    • /
    • v.7 no.2
    • /
    • pp.208-217
    • /
    • 2003
  • Introduction: Soft-tissue impingement syndrome is now increasingly recognized as a significant cause of the chronic ankle pain. As a method to detect soft-tissue ankle impingement, a characteristic history and physical examination, routine MR imaging, and direct MR arthrography were used. The efficacy of routine MR imaging has been controversial for usefulness because of low sensitivity and specificity. Direct MR artrhography was recommaned for diagnosis because of the highest sensitivity, specificity and accuracy, but it requires an invasive procedure. The purpose of this study is to investigate the diagnostic accuracy of Fat suppressed, contrast enhanced, three-dimensional fast gradient recalled acquisition in the steady state with rediofrequency spoiling magnetic resonance imaging(CE 3D-FSPGR MRI) and to evaluate the clinical outcome of the arthroscopic treatment in assessing soft-tissue impingement associated with trauma of the ankle. Materials and Methods: We reviewed 38 patients who had arthroscopic evaluations and preoperative magnetic resonance imaging studies(3D-FSPGR MRI) for post-traumatic chronic ankle pain between January 2000 and August 2002. Among them, 24 patients had osteochondral lesion, lateral instability, loose body, malunion of lateral malleoli, and peroneal tendon dislocation. The patient group consisted of 23 men and 15 women with the average age of 34 years(16-81 years). The mean time interval from the initial trauma to the operation was 15.5 months(3 to 40 months), The mean follow-up duration of the assessment was 15.6months(12-48 months). MRI was simultaneously reviewed by two radiologists blinded to the clinical diagnosis. The sensitivity, specificity and accuracy of MRI was obtained from radiologic and arthroscopic finding. Arthroscopic debridement and additional operation for associated disease were performed. We used a standard protocol to evaluate patients before the operation and at follow-up which includes American Orthopedic Foot and Ankle Society Ankle-Hindfoot Score. Results: For the assessment of the synovitis and soft tissue impingement, fat suppressed CE 3D-FSPGR MR imaging had the sensitivity of 91.9%, the specificity of 84.4 and the accuracy of 87.5%. AOFAS Ankle-Hindfoot Score of preoperative state was 69.2, and the mean score of the last follow-up was 89.1. These were assessed as having 50% excellent(90-100) and 50% good(75-89). The presence of other associated disease didn't show the statistically significant difference(>0.05). Conclusion: Fat suppressed CE 3D-FSPGR MR imaging is useful method comparable to MR arthrography for diagnosis of synovitis or soft-tissue impingement, and arthroscopic debridement results in good clinical outcome.

  • PDF

Fabrication of Large Area Transmission Electro-Absorption Modulator with High Uniformity Backside Etching

  • Lee, Soo Kyung;Na, Byung Hoon;Choi, Hee Ju;Ju, Gun Wu;Jeon, Jin Myeong;Cho, Yong Chul;Park, Yong Hwa;Park, Chang Young;Lee, Yong Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.220-220
    • /
    • 2013
  • Surface-normal transmission electro-absorption modulator (EAM) are attractive for high-definition (HD) three-dimensional (3D) imaging application due to its features such as small system volume and simple epitaxial structure [1,2]. However, EAM in order to be used for HD 3D imaging system requires uniform modulation performance over large area. To achieve highly uniform modulation performance of EAM at the operating wavelength of 850 nm, it is extremely important to remove the GaAs substrate over large area since GaAs material has high absorption coefficient below 870 nm which corresponds to band-edge energy of GaAs (1.424 eV). In this study, we propose and experimentally demonstrate a transmission EAM in which highly selective backside etching methods which include lapping, dry etching and wet etching is carried out to remove the GaAs substrate for achieving highly uniform modulation performance. First, lapping process on GaAs substrate was carried out for different lapping speeds (5 rpm, 7 rpm, 10 rpm) and the thickness was measured over different areas of surface. For a lapping speed of 5 rpm, a highly uniform surface over a large area ($2{\times}1\;mm^2$) was obtained. Second, optimization of inductive coupled plasma-reactive ion etching (ICP-RIE) was carried out to achieve anisotropy and high etch rate. The dry etching carried out using a gas mixture of SiCl4 and Ar, each having a flow rate of 10 sccm and 40 sccm, respectively with an RF power of 50 W, ICP power of 400 W and chamber pressure of 2 mTorr was the optimum etching condition. Last, the rest of GaAs substrate was successfully removed by highly selective backside wet etching with pH adjusted solution of citric acid and hydrogen peroxide. Citric acid/hydrogen peroxide etching solution having a volume ratio of 5:1 was the best etching condition which provides not only high selectivity of 235:1 between GaAs and AlAs but also good etching profile [3]. The fabricated transmission EAM array have an amplitude modulation of more than 50% at the bias voltage of -9 V and maintains high uniformity of >90% over large area ($2{\times}1\;mm^2$). These results show that the fabricated transmission EAM with substrate removed is an excellent candidate to be used as an optical shutter for HD 3D imaging application.

  • PDF

A Bio-Edutainment System to Virus-Vaccine Discovery based on Collaborative Molecular in Real-Time with VR

  • Park, Sung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.109-117
    • /
    • 2020
  • An edutainment system aims to help learners to recognize problems effectively, grasp and classify important information needed to solve the problems and convey the contents of what they have learned. Edutainment contents can be usefully applied to education and training in the both scientific and industrial areas. Our present work proposes an edutainment system that can be applied to a drug discovery process including virtual screening by using intuitive multi-modal interfaces. In this system, a stereoscopic monitor is used to make three-dimensional (3D) macro-molecular images, with supporting multi-modal interfaces to manipulate 3D models of molecular structures effectively. In this paper, our system can easily solve a docking simulation function, which is one of important virtual drug screening methods, by applying gaming factors. The level-up concept is implemented to realize a bio-game approach, in which the gaming factor depends on number of objects and users. The quality of the proposed system is evaluated with performance comparison in terms of a finishing time of a drug docking process to screen new inhibitors against target proteins of human immunodeficiency virus (HIV) in an e-drug discovery process.