• Title/Summary/Keyword: 3D (3Dimensional)

Search Result 6,385, Processing Time 0.046 seconds

CHARACTERIZATIONS OF TILTED SUPERLATTICE QUANTUM WIRE GROWN BY MIGRATION ENHANCED EPITAXY METHOD

  • Kim, D.W.;Woo, J.C.
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.753-759
    • /
    • 1996
  • The artificial construction of well-defined low-dimensional (low-D) quantum structures, such as quantum wire (QWR) still attracts attention of many researchers due to their applications in room-temperature optoelectronic devices. In this work, the migration enhanced epitaxial growth (MEE) and the analysis of InAs/ AlAs QWR are reported. On the vicinal semi-insulating InP substrate of $3^o$ tilted cut from (100) surface towards (010) direction, InAs/ AlAs QWR superlattices have been successfully grown by MEE with the introduction of growth interruption at each shutter operation of MBE cell. The in-situ RHEED analyses show that MEE gives superior step-flow growth (SFG) and sharper interface formation over a conventional MBE growth. We have grown 4 samples in series varying the growth temperature. The QWR samples are analyzed by photoluminescence (PL) and atomic force microscopy (AFM). From the AFM images, we can get the definitely resolved 1-D structures. This structure is believed to be due to the MEE method and its separation is better than any other data from others. We are now studying the dependence of the structure on the growth temperature.

  • PDF

Molecular and Structural Characterization of the Domain 2 of Hepatitis C Virus Non-structural Protein 5A

  • Liang, Yu;Kang, Cong Bao;Yoon, Ho Sup
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • Hepatitis C virus (HCV) non-structural protein 5A protein (NS5A), which consists of three functional domains, is involved in regulating viral replication, interferon resistance, and apoptosis. Recently, the three-dimensional structure of the domain 1 was determined. However, currently the molecular basis for the domains 2 and 3 of HCV NS5A is yet to be defined. Toward this end, we expressed, purified the domain 2 of the NS5A (NS5A-D2), and then performed biochemical and structural studies. The purified domain 2 was active and was able to bind NS5B and PKR, biological partners of NS5A. The results from gel filtration, CD analysis, 1D $^1H$ NMR and 2D $^1H-^{15}N$ heteronuclear single quantum correlation (HSQC) spectroscopy indicate that the domain 2 of NS5A appears to be flexible and disordered.

Multi-Image Stereo Method Using DEM Fusion Technique (DEM 융합 기법을 이용한 다중영상스테레오 방법)

  • Lim Sung-Min;Woo Dong-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.212-222
    • /
    • 2003
  • The ability to efficiently and robustly recover accurate 3D terrain models from sets of stereoscopic images is important to many civilian and military applications. A stereo matching has been an important tool for reconstructing three dimensional terrain. However, there exist many factors causing stereo matching error, such as occlusion, no feature or repetitive pattern in the correlation window, intensity variation, etc. Among them, occlusion can be only resolved by true multi-image stereo. In this paper, we present multi-image stereo method using DEM fusion as one of efficient and reliable true multi-image methods. Elevations generated by all pairs of images are combined by the fusion process which accepts an accurate elevation and rejects an outlier. We propose three fusion schemes: THD(Thresholding), BPS(Best Pair Selection) and MS(Median Selection). THD averages elevations after rejecting outliers by thresholding, while BPS selects the most reliable elevation. To determine the reliability of a elevation or detect the outlier, we employ the measure of self-consistency. The last scheme, MS, selects the median value of elevations. We test the effectiveness of the proposed methods with a quantitative analysis using simulated images. Experimental results indicate that all three fusion schemes showed much better improvement over the conventional binocular stereo in natural terrain of 29 Palms and urban site of Avenches.

A Numerical Study on the Heat Transfer Characteristics of the Multiple Slot Impinging Jet (다양한 노즐 수 변화에 따른 충돌 제트의 열전달 특성에 관한 수치적 연구)

  • Kim, Sang-Keun;Ha, Man-Yeong;Son, Chang-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.754-761
    • /
    • 2011
  • The present study numerically investigates two-dimensional flow and heat transfer in the multiple confined impinging slot jet. Numerical simulations are performed for the different Reynolds numbers(Re=100 and 200) in the range of nozzles from 1 to 9 and height ratios(H/D) from 2 to 5, where H/D is the ratio of the channel height to the slot width. The vector plots of velocity profile, stagnation and averaged Nusselt number distributions are presented in this paper. The dependency of thermal fields on the Reynolds number, nozzle number and height ratio can be clarified by observing the Nusselt number as heat transfer characteristic at the stagnation point and impingement surface. The Nusselt number at the stagnation point of the central slot shows unsteadiness at H/D=3 and Re=200. The value of Nusselt number at the stagnation point of the central slot decreases with higher Reynolds number and number of nozzle although overall area averaged Nusselt number increases. Hence careful selection of geometrical parameters and number of nozzle are necessary for optimization of the heat transfer performance of multiple slot impinging jet.

Visualization of 4-Dimensional Scattered Data Linear Interpolation Based on Data Dependent Tetrahedrization (4차원 산포된 자료 선형 보간의 가시화 -자료 값을 고려한 사면체 분할법에 의한-)

  • Lee, Kun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1553-1567
    • /
    • 1996
  • The numerous applications surface interpolation include the modeling and visualization phenomena. A tetrahedrization is one of pre-processing steps for 4-D space interpolation. The quality of a piecewise linear interpolation 4-D space depends not only on the distribution of the data points in $R^2$, but also on the data values. We show that the quality of approximation can be improved by data dependent tetraheadrization through visualization of 4-D space. This paper discusses Delaunary tetrahedrization method(sphere criterion) and one of the data dependent tetrahedrization methods(least squares fitting criterion). This paper also discusses new data dependent criteria:1) gradient difference, and 2) jump in normal direction derivative.

  • PDF

Validation Experiments for the Determination of Particle Focal Positions in Digital Particle Holography (디지털 입자 홀로그래피의 입자 초점면 결정에 관한 실험적 검증)

  • Yang, Yan;Kang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.784-790
    • /
    • 2008
  • The feasibility and the accuracy of the correlation coefficient(CC) method for the determination of particle positions along the optical axis in digital particle holography were verified by alidation experiments. A traverse system with capable of high precision was used to move the particle objects by exact known distances between several different positions. The particle positions along the optical axis were calculated by the CC method and compared with their exact values to obtain the errors of the focal plane determination. The tested particles were 2D dots in a calibration target along with different sized glass beads and droplets that reflected and caused a three-dimensional effect. The results show that the CC method can work well for both the 2D dots and the 3D particles. The effect of other particles on the focal plane determination was also investigated. The CC method can locate the focal plane of particles with a high precision, regardless of the existence of other particles.

Implementation of Real-Time Post-Processing for High-Quality Stereo Vision

  • Choi, Seungmin;Jeong, Jae-Chan;Chang, Jiho;Shin, Hochul;Lim, Eul-Gyoon;Cho, Jae Il;Hwang, Daehwan
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.752-765
    • /
    • 2015
  • We propose a novel post-processing algorithm and its very-large-scale integration architecture that simultaneously uses the passive and active stereo vision information to improve the reliability of the three-dimensional disparity in a hybrid stereo vision system. The proposed architecture consists of four steps - left-right consistency checking, semi-2D hole filling, a tiny adaptive variance checking, and a 2D weighted median filter. The experimental results show that the error rate of the proposed algorithm (5.77%) is less than that of a raw disparity (10.12%) for a real-world camera image having a $1,280{\times}720$ resolution and maximum disparity of 256. Moreover, for the famous Middlebury stereo image sets, the proposed algorithm's error rate (8.30%) is also less than that of the raw disparity (13.7%). The proposed architecture is implemented on a single commercial field-programmable gate array using only 13.01% of slice resources, which achieves a rate of 60 fps for $1,280{\times}720$ stereo images with a disparity range of 256.

Influence of the angles and number of scans on the accuracy of 3D laser scanning (3 차원 레이저 스캔영상 채득 시 스캔각도와 횟수에 따른 정확도)

  • Lee, Kyung-Min;Song, Hyo-Young;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.41 no.2
    • /
    • pp.76-86
    • /
    • 2011
  • Objective: To investigate whether the accuracy of 3D laser scanning is influenced by the angles and number of scans. Methods: Using a 3D laser scanner, 10 manikins with facial markers were scanned at 7 horizontal angles (front view and at $20^{\circ}$, $45^{\circ}$, and $60^{\circ}$ angles on the right and left sides). Three-dimensional facial images were reconstructed by 6 methods differing in the number and angles of scans, and measurements of these images were compared to the physical measurements from the manikins. Results: The laser scan images were magnified by 0.14 - 0.26%. For images reconstructed by merging 2 scans, excluding the front view; and by merging 3 scans, including the front view and scans obtained at $20^{\circ}$ on both sides; several measurements were significantly different than the physical measurements. However, for images reconstructed by merging 3 scans, including the front view; and 5 scans, including the front view and scans obtained at $20^{\circ}$ and $60^{\circ}$ on both sides; only 1 measurement was significantly different. Conclusions: These results suggest that the number and angle of scans influence the accuracy of 3D laser scanning. A minimum of 3 scans, including the front view and scans obtained at more than $45^{\circ}$ on both sides, should be integrated to obtain accurate 3D facial images.

Numerical Modeling of a Short-range Three-dimensional Flash LIDAR System Operating in a Scattering Atmosphere Based on the Monte Carlo Radiative Transfer Matrix Method (몬테 카를로 복사 전달 행렬 방법을 사용한 산란 대기에서 동작하는 단거리 3차원 플래시 라이다 시스템의 수치적 모델링)

  • An, Haechan;Na, Jeongkyun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.59-70
    • /
    • 2020
  • We discuss a modified numerical model based on the Monte Carlo radiative transfer (MCRT) method, i.e., the MCRT matrix method, for the analysis of atmospheric scattering effects in three-dimensional flash LIDAR systems. Based on the MCRT method, the radiative transfer function for a LIDAR signal is constructed in a form of a matrix, which corresponds to the characteristic response. Exploiting the superposition and convolution of the characteristic response matrices under the paraxial approximation, an extended computer simulation model of an overall flash LIDAR system is developed. The MCRT matrix method substantially reduces the number of tracking signals, which may grow excessively in the case of conventional Monte Carlo methods. Consequently, it can readily yield fast acquisition of the signal response under various scattering conditions and LIDAR-system configurations. Using the computational model based on the MCRT matrix method, we carry out numerical simulations of a three-dimensional flash LIDAR system operating under different atmospheric conditions, varying the scattering coefficient in terms of visible distance. We numerically analyze various phenomena caused by scattering effects in this system, such as degradation of the signal-to-noise ratio, glitches, and spatiotemporal spread and time delay of the LIDAR signals. The MCRT matrix method is expected to be very effective in analyzing a variety of LIDAR systems, including flash LIDAR systems for autonomous driving.

Using 3-dimensional digital smile design in esthetic restoration of anterior teeth: A case report (3차원 Digital Smile Design을 활용한 전치부 심미수복 증례)

  • Hong, Sungman;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.451-458
    • /
    • 2021
  • Currently, digital technology is being used in various fields of dental treatment. In particular, in the case of anterior esthetic restoration, the traditional restoration method cannot contain facial information and it is difficult for the patient to predict the treatment result. However, in the case of esthetic restoration through digital design, the visualization of the prosthesis design and the ease of reflecting patient feedback, and expecting the treatment result is available. In this case, the patient confirmed the results of restoration treatment using a digital method before treatment and obtained consent for treatment in an anterior tooth trauma patient. In addition, since the conventional digital smile design method uses only the patient's facial and smile information, the design was made on a two-dimensional plane, and its application was somewhat limited. However, in this case, a three-dimensional virtual patient was created and thus the designed restoration was viewed from various angles. Through this case, it was possible to obtain a high degree of satisfaction with the ease of communication with the patient and the technician during the esthetic restoration using the digital method, the simplicity of the procedure, and the treatment result.