• Title/Summary/Keyword: 3D프린팅 콘크리트

Search Result 36, Processing Time 0.024 seconds

Performance Analysis of Simultaneous Liftable 3D Concrete Printing Based on Statistical Analysis Algorithm (통계분석 알고리즘 프로그램을 활용한 동시 인상 3D 콘크리트 프린팅의 성능 분석)

  • Yoon-Chul Kim;Sung-Jo Kim;Bongsik Kim;Yongsoo Ji;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.407-414
    • /
    • 2023
  • In this study, an automated jack-up system, applicable to various fields, was employed for 3D concrete printing and developed as a simultaneous liftable 3D concrete printing system. This developed printing system enables safe and precise jack-up by monitoring the measured jack-up distance using Pearson correlation coefficient analysis and a hydraulic system with interquartile range analysis in real-time during 3D concrete printing operations. It is possible to secure the quality of 3D concrete printing structures, which is essential for expanding the application of 3D concrete printing to construct larger structures. Specimens were printed using both conventional 3D concrete printing and simultaneous liftable 3D concrete printing to evaluate the system performance. The printed specimens were investigated using a 3D scanner. The layer-wise diameter and angle of intersection of the scanned specimens were measured, and an analysis was performed to verify the advantages of the simultaneous liftable 3D concrete printing.

Compressive Strength Characteristics of 3D Printing Concrete in Low Temperature Environment by Using Early Strength Improvement Type Additive (조강형 첨가제 사용에 따른 저온환경에서의 3D 프린팅 콘크리트의 압축강도 특성)

  • Yoo, Byung-Hyun;Lee, Dong-gyu;Park, Jong-Pil;Hwang, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.386-392
    • /
    • 2020
  • The self-weight of the 3D printing concrete increases with increasing printing height. Therefore, the lower layer must be hardened within a suitable time to secure continuous printing performance. In particular, the hardening speed of concrete is slow in the winter season when the temperature was low. Hence, the early strength of 3D printing concrete requires improvement. In domestic and international literature, cases of increasing the early strength of concrete using inorganic chemical additives, such as amine-based, nitrate-based, sodium-based, and calcium-based, have been reported. In this study, early strength improvement-type additive samples (amine-based, nitrate-based, sodium-based) were prepared, and their performance was evaluated. When using a nitrate-based additive, the early strength was increased significantly in a 10 ℃ environment. In addition, it was possible to secure a higher early strength than the existing 3D printing concrete mixed at 20 ℃.

Buildability for Concrete 3D Printing According to Printing Time Gap (콘크리트 3D프린팅의 적층시간 간격에 따른 적층 성능)

  • Lee, Yoon Jung;Song, Jin-Soo;Choi, Seung-Ho;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.131-136
    • /
    • 2019
  • Buildability of fresh concrete, a key element of Concrete 3D printing, is the ability to build filaments at a desirable height without excessive deformation or collapse. Buildability is closely related to yield stress, and the higher the yield stress, the better. Also, the shear stress of fresh concrete increases as it hardens over the time after extruded, and consequently the buildability increases. Therefore, in concrete 3D printing, proper time gaps between printed layers (Printing Time Gap, PTG) are required to ensure the buildability of fresh concrete. As the PTG increases, the buildability increases; however, an excessive PTG reduces the bond performance between the printed layers, and the extrudability can be lowered as the printing time increases. In this research, therefore, 3D printing experiments were conducted with the variable of PTG to examine the buildability of 100 MPa-high strength concrete. In addition, a pseudo-layer loading method was applied to simulate the buildability test for 3D concrete printing and its applicability was examined.

Strength Analysis of 3D Concrete Printed Mortar Prism Samples (3D 콘크리트 프린팅된 모르타르 프리즘 시편의 강도 분석)

  • Kim, Sung-Jo;Bang, Gun-Woong;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2022
  • The 3D-printing technique is used for manufacturing objects by adding multiple layers, and it is relatively easy to manufacture objects with complex shapes. The 3D concrete printing technique, which incorporates 3D printing into the construction industry, does not use a formwork when placing concrete, and it requires less workload and labor, so economical construction is possible. However, 3D-printed concrete is expected to have a lower strength than that of molded concrete. In this study, the properties of 3D-printed concrete were analyzed. To fabricate the 3D-printed concrete samples, the extrusion path and shape of the samples were designed with Ultimaker Cura. Based on this, G-codes were generated to control the 3D printer. The optimal concrete mixing proportion was selected considering such factors as extrudability and buildability. Molded samples with the same dimensions were also fabricated for comparative analysis. The properties of each sample were measured through a three-point bending test and uniaxial compression test, and a comparative analysis was performed.

Strength Characteristics of 3D Printing Concrete for Exterior materials using Accelerating agent (급결제를 사용한 외장재용 3D 프린팅 콘크리트의 강도 특성)

  • Seo, Dae-Seuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.267-272
    • /
    • 2021
  • In this study, the output results of 3D printed exterior materials for application to buildings of various shapes are output tests using test specimens, in which 3D printing concrete is cast in a mold and accelerating agents are used to ensure stackability. The unit weight and strength characteristics of the body were analyzed. Compared to the unit weight of concrete placed in the mold, the unit weight of 3D printing concrete using accelerating agents tends to decrease by approximately 3.5% to 5.0%, and the compressive strength is the compressive strength of the concrete placed in the mold. In comparison, the compression strength of the output by 3D printing tended to decrease by approximately 36% to 46%. In the flexural strength, the compressive strength of the output through 3D printing decreased by approximately 36% to 46% compared to the compressive strength of concrete placed in the mold. The impact on the strength characteristics of 3D printed concrete using accelerating agents tended to decrease by approximately 2.0 to 5.8%. Therefore, 3D printing output accelerating agents can be used.

Development of Shrinkage Reducing Agent for 3D Printing Concrete (3D 프린팅 콘크리트용 수축저감제 개발)

  • Lee, Dong-gyu;Yoo, Byung-Hyun;Son, Ho-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.37-43
    • /
    • 2019
  • Since 3D printed concrete can be constructed without formwork, it is easy to construct an atypical structure, and the construction time and labor cost can be reduced. However, since the construction is exposed to the outside, shrinkage cracking due to moisture loss inside and outside the concrete occurs. Therefore, in order to improve the durability of the 3D printed concrete, a shrinkage reduction plan of the 3D printed concrete is required. In this study, glycol-based and alcohol-based shrinkage reducing agents were fabricated and evaluated for their performance. The shrinkage reducing agent samples showing excellent performance were selected and applied to 3D printed concrete. As a result, the compressive strength was increased by more than 10% and the shrinkage was reduced by more than 36% when using a shrinkage reducing agent. It is expected that the production of high quality 3D printed concrete will be possible because it is possible to increase the compressive strength and reduce the amount of dry shrinkage by applying a shrinkage reducing agent for 3D printed concrete.

Prediction of Mechanical Response of 3D Printed Concrete according to Pore Distribution using Micro CT Images (마이크로 CT 이미지를 활용한 3D 프린팅 콘크리트의 공극 분포에 따른 인장파괴의 거동 예측)

  • Yoo, Chan Ho;Kim, Ji-Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.141-147
    • /
    • 2024
  • In this study, micro CT images were used to confirm the tensile fracture strength according to the pore distribution characteristics of 3D printed concrete. Unlike general specimens, concrete structures printed by 3D printing techniques have the direction of pores (voids) depending on the stacking direction and the presence of filaments contact surfaces. Accordingly, the pore distribution of 3D printed concrete specimens was analyzed through quantitative and qualitative methods, and the tensile strength by direction was analyzed through a finite element technique. It was confirmed that the pores inside the 3D printed specimen had directionality, resulting in their anisotropic behavior. This study aims to analyze the characteristics of 3D concrete printing specimen and correlate them with simulation-based mechanical properties to improve performance of 3D printed material and structure.

Buildability of 3D Printed Concrete Structures at Various Nozzle Speeds and Aspect Ratios (노즐이동속도와 변장비에 따른 3D 프린팅 콘크리트 구조물의 시공성)

  • Park, Ji-Hun;Lee, Jungwoo;Joh, Changbin;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.375-382
    • /
    • 2019
  • In this study, an experimental study on the buildability of the structure using the developed printing materials and equipment was performed. Experimental variables included the moving speed of nozzles(=80 and 100mm/s), the revolutions per minute (RPM) of screw in discharge buckets, and the aspect ratio(=1.67 and 5.00) reflecting wall length of the structures. Buildability of the 3D printed concrete structures was analyzed based on the maximum decomposition layer and collapse patterns of the structures according to the experimental variables. The nozzle movement speed of 80mm/s and the aspect ratio of 1.67 were favorable for 3D printing in this study. The collapse process of structure due to uneven layer decomposition was also analyzed through the relative displacement measurement of the lower part of the structure during printing.

Mix Design Process for Securing Extrudability of Concrete Containing Coarse Aggregates for 3D Printing (3D 프린팅을 위한 굵은 골재가 포함된 콘크리트의 압출성 확보를 위한 배합설계 프로세스)

  • Yoon Jung Lee;Sun-Jin Han;Sang-Hoon Lee;SuMin Yoon;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2024
  • Mortar has been applied in most previous studies on 3D concrete printing. In such cases, however, the economic efficient cannot help decreasing due to higher binder contents and larger amount of fine aggregates. In order to enhance the applicability of 3D printing technology to construction industry, therefore, 3D concrete printing technology utilizing coarse aggregates needs to be developed further. This study aims at proposing the mix design process of concrete containing coarse aggregates for 3D printing. Based on extensive literature review and experimental studies, the mix proportion suitable for 3D printing has been derived, and the extrudability of concrete with coarse aggregates has been verified through 3D printing tests. The primary variable of the extrudability tests was the contents of viscosity modifying agent (VMA), and the extrudability was quantitatively evaluated by measuring dimensions, distribution of aggregates, and surface quality of 3D-printed filaments. The test results showed that the dimensional suitability and surface quality were improved as the VMA contents were larger, and the coarse aggregates were evenly distributed in the section of filament regardless of the VMA contents. Based on the test results, the mix design process for concrete containing coarse aggregates for 3D printing has been proposed.

Shear Bond Strength of 3D Printed Concrete Layers According to Water Cement Ratio and Printing Time Gap (물시멘트비와 프린팅 시간간격에 따른 3D 프린팅 콘크리트 레이어의 전단부착강도)

  • Kim, Jin-Ho;Lee, Yoon Jung;Jeong, Hoseong;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.199-208
    • /
    • 2021
  • The extrudability of 3D printed concrete and its member strength can be highly influenced by water cement ratio (W/C) and printing time gap (PTG). In this study, mold cast specimens and 3D printed specimens were fabricated with variables of W/C ratio and PTG, and their shear bond strength and interlayer surface moisture content were measured and analyzed. The test results showed that the shear bond strength is greatly influenced by the amount of interlayer surface moisture. It is thus recommended that proper amount of interlayer surface moisture with respect to PTG needs to be maintained to have a required interlayer shear bond strength. In addition, further research is required to estimate the effect of many environmental factors that can influence the interlayer surface moisture content.