• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.032 seconds

Depth Scaling Method of DirectX-based Stereoscopic Game Image (DirectX 기반 입체 게임 영상의 깊이감 조절 기법)

  • Kim, Jin-Mo;Cho, Hyung-Je
    • Journal of Korea Game Society
    • /
    • v.10 no.1
    • /
    • pp.135-146
    • /
    • 2010
  • The development of image technologies in such area as broadcasting and movies has recently increased our attention to 3D stereoscopic images. In addition, the development of stereoscopic image representation technologies in 3D contents becomes more active over time due to the representational limitations of 2D images. Without limitation to the above-mentioned area, stereoscopic image technologies have been developed and studied so that they can be widely accessed in diverse areas including medical services and education. Due to the refined production, however, required to represent a three dimensional effects and the fatigue caused by the perception of a three dimensional effects, the stereoscopic image technologies are not combined into real time systems such as games where environments change unforeseeably. In this study we design a technique to adjust the depth scaling that will enable efficient management of a three dimensional effects and to relieve fatigue through automatic view point interval adjustment in accordance with situations based on the geometrical structure of the DirectX SDK graphic pipeline. Through this, we would like to suggest a new alternative idea to activate the production of games combined with stereoscopic image technologies.

Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.623-649
    • /
    • 2016
  • Most of the early studies on plates vibration are focused on two-dimensional theories, these theories reduce the dimensions of problems from three to two by introducing some assumptions in mathematical modeling leading to simpler expressions and derivation of solutions. However, these simplifications inherently bring errors and therefore may lead to unreliable results for relatively thick plates. The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of continuously graded carbon nanotube-reinforced (CGCNTR) rectangular plates resting on two-parameter elastic foundations. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. In this study, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented, straight carbon nanotubes (CNTs). The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The formulations are based on the three-dimensional elasticity theory. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. The novelty of the present work is to exploit Eshelby-Mori-Tanaka approach in order to reveal the impacts of the volume fractions of oriented CNTs, different CNTs distributions, various coefficients of foundation and different combinations of free, simply supported and clamped boundary conditions on the vibrational characteristics of CGCNTR rectangular plates. The new results can be used as benchmark solutions for future researches.

Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs

  • Yu, Zhixiang;Zhu, Fu;Cao, Ruizhou;Chen, Xiaoxiao;Zhao, Lei;Zhao, Shichun
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.31-47
    • /
    • 2019
  • The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.

3D Inspection of Printed Circuit Boards (PCB의 3차원 검사)

  • 조홍주;박현우;이준재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2375-2378
    • /
    • 2003
  • In manufacture of printed circuit boards, one important issue is precisely to measure the three-dimensional shape of the solder paste silk-screened prior to direct surface mounting of chips. This paper presents the 3D shape reconstruction of solder paste using the optical triangulation method based on structured light or slit beam and the measurement algorithm for height, volume. area, and coplanarity on component pads from the 3D range image. Futhermore, statistical process control function is incorporated for process capability analysis.

  • PDF

A Die-Selection Method Using Search-Space Conditions for Yield Enhancement in 3D Memory

  • Lee, Joo-Hwan;Park, Ki-Hyun;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.904-913
    • /
    • 2011
  • Three-dimensional (3D) memories using through-silicon vias (TSVs) as vertical buses across memory layers will likely be the first commercial application of 3D integrated circuit technology. The memory dies to stack together in a 3D memory are selected by a die-selection method. The conventional die-selection methods do not result in a high-enough yields of 3D memories because 3D memories are typically composed of known-good-dies (KGDs), which are repaired using self-contained redundancies. In 3D memory, redundancy sharing between neighboring vertical memory dies using TSVs is an effective strategy for yield enhancement. With the redundancy sharing strategy, a known-bad-die (KBD) possibly becomes a KGD after bonding. In this paper, we propose a novel die-selection method using KBDs as well as KGDs for yield enhancement in 3D memory. The proposed die-selection method uses three search-space conditions, which can reduce the search space for selecting memory dies to manufacture 3D memories. Simulation results show that the proposed die-selection method can significantly improve the yield of 3D memories in various fault distributions.

Design and Analysis of Double Excited 3-Degree-of-Freedom Motor for Robots

  • Kwon, Byung-Il;Kim, Young-Boong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.618-625
    • /
    • 2011
  • This paper presents a double excited three degree-of-freedom (3DOF) motor. The proposed 3DOF motor is designed with a laminated structure, making it easy to manufacture. In addition, it has windings on the stator and rotor, and does not require an expensive permanent magnet. We explain the structure, principle of motion, and design of the proposed motor, and perform an analysis of the static characteristics using the two- and three-dimensional finite element methods (3D FEM). The feasibility of 3D FEM analysis is confirmed by comparing the 3D FEM analysis and experimental results for the rolling and pitching motion. We also confirm the occurrence of holding torque in every motion.

Unleashing the Power of Undifferentiated Induced Pluripotent Stem Cell Bioprinting: Current Progress and Future Prospects

  • Boyoung Kim;Jiyoon Kim;Soah Lee
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.38-50
    • /
    • 2024
  • Induced pluripotent stem cell (iPSC) technology has revolutionized various fields, including stem cell research, disease modeling, and regenerative medicine. The evolution of iPSC-based models has transitioned from conventional two-dimensional systems to more physiologically relevant three-dimensional (3D) models such as spheroids and organoids. Nonetheless, there still remain challenges including limitations in creating complex 3D tissue geometry and structures, the emergence of necrotic core in existing 3D models, and limited scalability and reproducibility. 3D bioprinting has emerged as a revolutionary technology that can facilitate the development of complex 3D tissues and organs with high scalability and reproducibility. This innovative approach has the potential to effectively bridge the gap between conventional iPSC models and complex 3D tissues in vivo. This review focuses on current trends and advancements in the bioprinting of iPSCs. Specifically, it covers the fundamental concepts and techniques of bioprinting and bioink design, reviews recent progress in iPSC bioprinting research with a specific focus on bioprinting undifferentiated iPSCs, and concludes by discussing existing limitations and future prospects.

Correlation between the 2-Dimensional Extent of Orbital Defects and the 3-Dimensional Volume of Herniated Orbital Content in Patients with Isolated Orbital Wall Fractures

  • Cha, Jong Hyun;Moon, Myeong Ho;Lee, Yong Hae;Koh, In Chang;Kim, Kyu Nam;Kim, Chang Gyun;Kim, Hoon
    • Archives of Plastic Surgery
    • /
    • v.44 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • Background The purpose of this study was to assess the correlation between the 2-dimensional (2D) extent of orbital defects and the 3-dimensional (3D) volume of herniated orbital content in patients with an orbital wall fracture. Methods This retrospective study was based on the medical records and radiologic data of 60 patients from January 2014 to June 2016 for a unilateral isolated orbital wall fracture. They were classified into 2 groups depending on whether the fracture involved the inferior wall (group I, n=30) or the medial wall (group M, n=30). The 2D area of the orbital defect was calculated using the conventional formula. The 2D extent of the orbital defect and the 3D volume of herniated orbital content were measured with 3D image processing software. Statistical analysis was performed to evaluate the correlations between the 2D and 3D parameters. Results Varying degrees of positive correlation were found between the 2D extent of the orbital defects and the 3D herniated orbital volume in both groups (Pearson correlation coefficient, 0.568-0.788; $R^2=32.2%-62.1%$). Conclusions Both the calculated and measured 2D extent of the orbital defects showed a positive correlation with the 3D herniated orbital volume in orbital wall fractures. However, a relatively large volume of herniation (>$0.9cm^3$) occurred not infrequently despite the presence of a small orbital defect (<$1.9cm^2$). Therefore, estimating the 3D volume of the herniated content in addition to the 2D orbital defect would be helpful for determining whether surgery is indicated and ensuring adequate surgical outcomes.

Three Dimensional Vibration Analysis of Thick, Circular and Annular Plates with Nonlinear Thickness Variation (비선형 두께 변분을 갖는 두꺼운 원형판과 환형판의 3차원적 진동해석)

  • 장승환;심현주;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.119-129
    • /
    • 2004
  • A three dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, circular and annular plates with nonlinear thickness variation along the radial direction. Unlike conventional plate theories, which are mathematically two dimensional (2D), the present method is based upon the 3D dynamic equations of elasticity. Displacement components u/sub s/, u/sub z/, and u/sub θ/ in the radial, thickness, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the s and z directions. Potential (strain) and kinetic energies of the plates are formulated, and the Ritz method is used to solve the eigenvalue problem thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four digit exactitude is demonstrated for the first five frequencies of the plates. Numerical results we presented for completely free, annular and circular plates with uniform linear, and quadratic variations in thickness. Comparisons are also made between results obtained from the present 3D and previously published thin plate (2D) data.

Three-dimensional vibration measurement algorithm using one laser scanning vibrometer (한대의 LSV 를 이용한 3 차원 진동측정방법)

  • Kim, Dong-Kyu;Song, Ha-Jun;Park, Kyi-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.935-939
    • /
    • 2012
  • 3D vibration measurement is achieved using one laser scanning vibrometer(LSV) and Laser scanner(LS) by moving the LSV to three arbitrarily locations from the principle that vibration analysis based on the frequency domain is independent of the vibration signal based on time domain. The proposed system has the same effect as using three sets of LSVs. It has an advantage of reducing equipment costs. Analytical approach of obtaining in-plane and out-of-plane vibration of surface is introduced using geometrical relations between three LSV coordinates and vibration measured at three different locations.

  • PDF