• 제목/요약/키워드: 3D(three-dimensional)

Search Result 4,316, Processing Time 0.032 seconds

Comparative Evaluation of Two-dimensional Radiography and Three Dimensional Computed Tomography Based Dose-volume Parameters for High-dose-rate Intracavitary Brachytherapy of Cervical Cancer: A Prospective Study

  • Madan, Renu;Pathy, Sushmita;Subramani, Vellaiyan;Sharma, Seema;Mohanti, Bidhu Kalyan;Chander, Subhash;Thulkar, Sanjay;Kumar, Lalit;Dadhwal, Vatsla
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4717-4721
    • /
    • 2014
  • Background: Dosimetric comparison of two dimensional (2D) radiography and three-dimensional computed tomography (3D-CT) based dose distributions with high-dose-rate (HDR) intracavitry radiotherapy (ICRT) for carcinoma cervix, in terms of target coverage and doses to bladder and rectum. Materials and Methods: Sixty four sessions of HDR ICRT were performed in 22 patients. External beam radiotherapy to pelvis at a dose of 50 Gray in 27 fractions followed by HDR ICRT, 21 Grays to point A in 3 sessions, one week apart was planned. All patients underwent 2D-orthogonal and 3D-CT simulation for each session. Treatment plans were generated using 2D-orthogonal images and dose prescription was made at point A. 3D plans were generated using 3D-CT images after delineating target volume and organs at risk. Comparative evaluation of 2D and 3D treatment planning was made for each session in terms of target coverage (dose received by 90%, 95% and 100% of the target volume: D90, D95 and D100 respectively) and doses to bladder and rectum: ICRU-38 bladder and rectum point dose in 2D planning and dose to 0.1cc, 1cc, 2cc, 5cc, and 10cc of bladder and rectum in 3D planning. Results: Mean doses received by 100% and 90% of the target volume were $4.24{\pm}0.63$ and $4.9{\pm}0.56$ Gy respectively. Doses received by 0.1cc, 1cc and 2cc volume of bladder were $2.88{\pm}0.72$, $2.5{\pm}0.65$ and $2.2{\pm}0.57$ times more than the ICRU bladder reference point. Similarly, doses received by 0.1cc, 1cc and 2cc of rectum were $1.80{\pm}0.5$, $1.48{\pm}0.41$ and $1.35{\pm}0.37$ times higher than ICRU rectal reference point. Conclusions: Dosimetric comparative evaluation of 2D and 3D CT based treatment planning for the same brachytherapy session demonstrates underestimation of OAR doses and overestimation of target coverage in 2D treatment planning.

Three-Dimensional Numerical Analysis of the Reinforcement System and Arching Effects in the Goa-ri Ancient Tomb (아칭효과를 고려한 고아리 고분의 보강 시스템에 대한 3차원 수치해석)

  • Jeon, Byung Gon;Oh, Seboong
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.6
    • /
    • pp.21-32
    • /
    • 2024
  • Numerical analysis was conducted to assess the stability of an ancient tomb located in Goryeong using the tunnel analysis method. The tomb, constructed during the Daegaya Dynasty, featured a dry construction process and a corbel arch structure. The numerical analysis procedure, accounting for arching effects, was validated through comparison with previous experimental results and limit analysis. A three-dimensional (3D) numerical analysis was conducted using the validated procedure, with tomb's section modeled through 3D scanning. Based on the results of this analysis, weak regions in the masonry arches of the tomb structure were identified, and reinforcement plans were developed to ensure its stability.

Development of Three-Dimensional Deformable Flexible Printed Circuit Boards Using Ag Flake-Based Conductors and Thermoplastic Polyamide Substrates

  • Aram Lee;Minji Kang;Do Young Kim;Hee Yoon Jang;Ji-Won Park;Tae-Wook Kim;Jae-Min Hong;Seoung-Ki Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.420-426
    • /
    • 2024
  • This study proposes an innovative methodology for developing flexible printed circuit boards (FPCBs) capable of conforming to three-dimensional shapes, meeting the increasing demand for electronic circuits in diverse and complex product designs. By integrating a traditional flat plate-based fabrication process with a subsequent three-dimensional thermal deformation technique, we have successfully demonstrated an FPCB that maintains stable electrical characteristics despite significant shape deformations. Using a modified polyimide substrate along with Ag flake-based conductive ink, we identified optimized process variables that enable substrate thermal deformation at lower temperatures (~130℃) and enhance the stretchability of the conductive ink (ε ~30%). The application of this novel FPCB in a prototype 3D-shaped sensor device, incorporating photosensors and temperature sensors, illustrates its potential for creating multifunctional, shape-adaptable electronic devices. The sensor can detect external light sources and measure ambient temperature, demonstrating stable operation even after transitioning from a planar to a three-dimensional configuration. This research lays the foundation for next-generation FPCBs that can be seamlessly integrated into various products, ushering in a new era of electronic device design and functionality.

Use Management for Urban Building Using 3D GIS (3차원 GIS를 이용한 도시건축물 용도관리)

  • 김성삼;김기열;유복모;유환희
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.251-256
    • /
    • 2003
  • Conventional 2D GIS has many difficulties to visualize and analyze three dimensional real world. To improve those problems and implement realistic spatial analysis, Interest in 3D GIS is increasing remarkably. Currently, Some local governments are carrying out pilot projects for 3D GIS, Government also is setting up the master plan and the road map for national information construction. In this study, introducing 3D GIS to urban planning, we evaluated limits of conventional regulation and proposed effective and reasonable means lot restricting location of merrymaking place in local government.

  • PDF

The change of pupil size after viewing three dimensional TV (2안식 입체TV 주시전후의 동공면적의 변화)

  • Cho, Am
    • Proceedings of the ESK Conference
    • /
    • 1995.04a
    • /
    • pp.187-198
    • /
    • 1995
  • The physiological change of eyes while viewing 3D TV was investigated. The change of pupil size was used as the measure of evaluation. The results are as follows: (1) The pupil size decreases after viewing 3D images. (2) The indoor illumination has a significant effect on the pupil size in both 2D and 3D cases. (3) Less change of pupil size were observed under the indoor illumination. Thus, if we only focus on the visual load on the eye, for viewing 3D images, it will be better to use indoor illumination.

  • PDF

Research on the Production Method of Three-Dimensional Image Scanimation (3D 입체 이미지 스케니메이션 제작 기법 연구)

  • Shan, Xinyi;Chung, Jean-Hun
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.209-215
    • /
    • 2016
  • The quantity of image frames, the widths of transparent slits, and the black bars on the scanline are the three basic elements of scanimation. Besides, the size of scanimation, the color and contrast of scanimation, and the brightness of scanline, etc, can also influence the optical illusion of scanimation. Based on the recent principle of production of 2D scanimation, and through asking questions, and making corresponding experiment, this research finally gets to the conclusion. Based on the principle of production of 3D scanimation, and through various basic testing, this paper aims to verify how to bring out the best visual effects (optical illusion) of animated illusion scanimation in publications by using the 3D animation in the publications. And the future goal is to study and flexibly use Z-axis space in the scanimation.

The Influence of a Single Melt Pool Morphology on Densification Behavior of Three-Dimensional Structure Fabricated by Additive Manufacturing (적층 가공된 3차원 조형체의 치밀화에 미치는 단일 melt pool 형상의 영향)

  • Choe, Jungho;Yun, Jaecheol;Yang, Dong-Yeol;Yang, Sangsun;Yu, Ji-Hun;Lee, Chang-Woo;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • Selective laser melting (SLM) can produce a layer of a metal powder and then fabricate a three-dimensional structure by a layer-by-layer method. Each layer consists of several lines of molten metal. Laser parameters and thermal properties of the materials affect the geometric characteristics of the melt pool such as its height, depth, and width. The geometrical characteristics of the melt pool are determined herein by optical microscopy and three-dimensional bulk structures are fabricated to investigate the relationship between them. Powders of the commercially available Fe-based tool steel AISI H13 and Ni-based superalloy Inconel 738LC are used to investigate the effect of material properties. Only the scan speed is controlled to change the laser parameters. The laser power and hatch space are maintained throughout the study. Laser of a higher energy density is seen to melt a wider and deeper range of powder and substrate; however, it does not correspond with the most highly densified three-dimensional structure. H13 shows the highest density at a laser scan speed of 200 mm/s whereas Inconel 738LC shows the highest density at 600 mm/s.

Effective Ray-tracing based Rendering Methods for Point Cloud Data in Mobile Environments (모바일 환경에서 점 구름 데이터에 대한 효과적인 광선 추적 기반 렌더링 기법)

  • Woong Seo;Youngwook Kim;Kiseo Park;Yerin Kim;Insung Ihm
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.93-103
    • /
    • 2023
  • The problem of reconstructing three-dimensional models of people and objects from color and depth images captured by low-cost RGB-D cameras has long been an active research area in computer graphics. Color and depth images captured by low-cost RGB-D cameras are represented as point clouds in three-dimensional space, which correspond to discrete values in a continuous three-dimensional space and require additional surface reconstruction compared to rendering using polygonal models. In this paper, we propose an effective ray-tracing based technique for visualizing point clouds rather than polygonal models. In particular, our method shows the possibility of an effective rendering method even in mobile environment which has limited performance due to processor heat and lack of battery.

Application Analysis of Digital Photogrammetry and Optical Scanning Technique for Cultural Heritages Restoration (문화재 원형복원을 위한 수치사진측량과 광학스캐닝기법의 응용분석)

  • Han, Seung Hee;Bae, Yeon Soung;Bae, Sang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.869-876
    • /
    • 2006
  • In the case of earthenware cultural heritages that are found in the form of fragments, the major task is quick and precise restoration. The existing method, which follows the rule of trial and error, is not only greatly time consuming but also lacked precision. If this job could be done by three dimensional scanning, matching up pieces could be done with remarkable efficiency. In this study, the original earthenware was modeled through three-dimensional pattern scanning and photogrammetry, and each of the fragments were scanned and modeled. In order to obtain images from the photogrammetry, we calibrated and used a Canon EOS 1DS real size camera. We analyzed the relationship among the sections of the formed model, efficiently compounded them, and analyzed the errors through residual and color error map. Also, we built a web-based three-dimensional simulation environment centering around the users, for the virtual museum.

Effect of Multi-directional Random Waves on Characteristics of 3-D Wave Field around Permeable Submerged Breakwaters (다방향 불규칙파가 투과성 잠제 주변의 3차원 파동장에 미치는 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.68-78
    • /
    • 2012
  • This study proposes an improved 3-D model that includes a new non-reflected wave generation system for oblique incident and multi-directional random waves, which enables us to estimate the effect of the various wave-types on 3-D wave fields in a coastal area with permeable submerged breakwaters. Then, using the numerical results,the three-dimensional wave field characteristics around permeable submerged breakwaters are examined in cases of oblique incident and multi-directional random waves. Especially, the wave height, mean surface elevation and mean flow around the submerged breakwaters are discussed in relation to the variation of incident wave condition.