• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.037 seconds

Wavefront 3D Reconstruction and Measurement for Natural 3D Display System

  • Matoba, Osamu;Nitta, Kouichi;Awatsuji, Yasuhiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.935-938
    • /
    • 2008
  • Three-dimensional (3D) display systems based on wavefront reconstruction are presented. To obtain the wavefront of 3D objects, we present holographic recording using temporally or spatially phase-shifting interferometer. In the 3D display systems, phase-only reconstruction using a spatial light modulator and an approach to increase the reconstructed power are presented.

  • PDF

Model-based 3-D object recognition using hopfield neural network (Hopfield 신경회로망을 이용한 모델 기반형 3차원 물체 인식)

  • 정우상;송호근;김태은;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.60-72
    • /
    • 1996
  • In this paper, a enw model-base three-dimensional (3-D) object recognition mehtod using hopfield network is proposed. To minimize deformation of feature values on 3-D rotation, we select 3-D shape features and 3-D relational features which have rotational invariant characteristics. Then these feature values are normalized to have scale invariant characteristics, also. The input features are matched with model features by optimization process of hopjfield network in the form of two dimensional arrayed neurons. Experimental results on object classification and object matching with the 3-D rotated, scale changed, an dpartial oculued objects show good performance of proposed method.

  • PDF

Crosstalk evaluation in multiview autostereoscopic three-dimensional displays with an optimized diaphragm applied

  • Peng, Yi-Fan;Li, Hai-Feng;Zheng, Zhen-Rong;Xia, Xin-Xing;Yao, Zhi;Liu, Xu
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • The crosstalk evaluation of multiview autostereoscopic three-dimensional (3D) displays is discussed, with both the human and technical factors investigated via image quality assessment. In the imaging performance measurements and analysis for a multiview autostereoscopic display prototype equipment, it was inferred that crosstalk would have both a positive and a negative effect on the imaging performance of the equipment. The importance of the attached diaphragm in the crosstalk evaluation was proposed and then experimentally verified, using the developed prototype equipment. The luminance distribution and crosstalk situation were given, with two different diaphragm arrays applied. The analysis results showed that the imaging performance of this 3D display system can be improved with minimum changes to the system structure.

Three-dimensional effective properties of layered composites with imperfect interfaces

  • Sertse, Hamsasew;Yu, Wenbin
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.639-650
    • /
    • 2017
  • The objective of this paper is to obtain three-dimensional (3D) effective properties for layered composites with imperfect interfaces using mechanics of structure genome. The imperfect interface is modeled using linear traction-displacement model that allows small infinitesimal displacement jump across the interface. The predictions obtained from the current analysis are compared with the 3D finite element analysis (FEA). In this study, it is found that the present model shows excellent agreement with the results obtained using 3D FEA by employing periodic boundary conditions. The prediction also reveals that in-plane longitudinal and shear moduli, and all Poisson's ratios are observed to be not affected by the interfacial stiffness while the predictions of transverse longitudinal and shear moduli are significantly influenced by interfacial stiffness.

Development of 3D Laser Welding System (3차원 레이저 용접시스템 개발)

  • Kang H.S.;Suh J.;Lee J.H.;LEE M.Y.;Jung B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.932-935
    • /
    • 2005
  • Three dimensional laser welding technology for light car body is studied. A robot, a seam tracking system and 4kW CW Nd:YAG laser are used for three dimensional robot laser welding system. The Laser system is used 4kW Nd:YAG laser(HL4006D) of Trumpf and the Robot system is used IRB6400R of ABB. The Seam tracking system is SMRT-20LS of ServoRobot. The welding joint of steel plate are butt and lap joint. The 3-D welding for Non-linear Tailored blank is performed after the observation experiments of bead on plate. Finally, the welding process for non-linear tailored blank and front side member is developed.

  • PDF

Creating protective appliances for preventing dental injury during endotracheal intubation using intraoral scanning and 3D printing: a technical note

  • Cho, Jin-Hyung;Park, Wonse;Park, Kyeong-Mee;Kim, Seo-Yul;Kim, Kee-Deog
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.1
    • /
    • pp.55-59
    • /
    • 2017
  • Digital dentistry has influenced many dental procedures, such as three-dimensional (3D) diagnosis and treatment planning, surgical splints, and prosthetic treatments. Patient-specific protective appliances (PSPAs) prevent dental injury during endotracheal intubation. However, the required laboratory work takes time, and there is the possibility of tooth extraction while obtaining the dental impression. In this technical report, we utilized new digital technology for creating PSPAs, using direct intraoral scanners and 3D printers for dental cast fabrication.

Development of an Automation Tool for the Three-Dimensional Finite Element Analysis of Machine Tool Spindles

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.166-171
    • /
    • 2015
  • In this study, an automation tool was developed for rapid evaluation of machine tool spindle designs with automated three-dimensional finite element analysis (3D FEA) using solid elements. The tool performs FEA with the minimum data of point coordinates to define the section of the spindle shaft and bearing positions. Using object-oriented programming techniques, the tool was implemented in the programming environment of a CAD system to make use of its objects. Its modules were constructed with the objects to generate the geometric model and then to convert it into the FE model of 3D solid elements at the workbenches of the CAD system using the point data. Graphic user interfaces were developed to allow users to interact with the tool. This tool is helpful for identification of a near optimal design of the spindle based on, for example, stiffness with multiple design changes and then FEAs.

A state space meshless method for the 3D analysis of FGM axisymmetric circular plates

  • Wu, Chih-Ping;Liu, Yan-Cheng
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.161-182
    • /
    • 2016
  • A state space differential reproducing kernel (DRK) method is developed for the three-dimensional (3D) analysis of functionally graded material (FGM) axisymmetric circular plates with simply-supported and clamped edges. The strong formulation of this 3D elasticity axisymmetric problem is derived on the basis of the Reissner mixed variational theorem (RMVT), which consists of the Euler-Lagrange equations of this problem and its associated boundary conditions. The primary field variables are naturally independent of the circumferential coordinate, then interpolated in the radial coordinate using the early proposed DRK interpolation functions, and finally the state space equations of this problem are obtained, which represent a system of ordinary differential equations in the thickness coordinate. The state space DRK solutions can then be obtained by means of the transfer matrix method. The accuracy and convergence of this method are examined by comparing their solutions with the accurate ones available in the literature.

Feasibility Study of Gait Recognition Using Points in Three-Dimensional Space

  • Kim, Minsung;Kim, Mingon;Park, Sumin;Kwon, Junghoon;Park, Jaeheung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.124-132
    • /
    • 2013
  • This study investigated the feasibility of gait recognition using points on the body in three-dimensional (3D) space based on comparisons of four different feature vectors. To obtain the point trajectories on the body in 3D, gait motion data were captured from 10 participants using a 3D motion capture system, and four shoes with different heel heights were used to study the effects of heel height on gait recognition. Finally, the recognition rates were compared using four methods and different heel heights.

Analysis of offshore pipeline laid on 3D seabed configuration by Abaqus

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid;Sagharichiha, Mohammad
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.31-40
    • /
    • 2015
  • Three dimensional (3D) non-linear finite element analysis of offshore pipeline is investigated in this work with the help of general purpose software Abaqus. The general algorithm for the finite element approach is introduced. The 3D seabed mesh, limited to a corridor along the pipeline, is extracted from survey data via Fledermous software. Moreover soil bearing capacity and coefficient of frictions, obtained from the field survey report, and are introduced into the finite element model through the interaction module. For a case of study, a 32inch pipeline with API 5L X65 material grade subjected to high pressure and high temperature loading is investigated in more details.