• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.037 seconds

GEOMETRY OF SATELLITE IMAGES - CALIBRATION AND MATHEMATICAL MODELS

  • JACOBSEN KARSTEN
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.182-185
    • /
    • 2005
  • Satellite cameras are calibrated before launch in detail and in general, but it cannot be guaranteed that the geometry is not changing during launch and caused by thermal influence of the sun in the orbit. Modem satellite imaging systems are based on CCD-line sensors. Because of the required high sampling rate the length of used CCD-lines is limited. For reaching a sufficient swath width, some CCD-lines are combined to a longer virtual CCD-line. The images generated by the individual CCD-lines do overlap slightly and so they can be shifted in x- and y-direction in relation to a chosen reference image just based on tie points. For the alignment and difference in scale, control points are required. The resulting virtual image has only negligible errors in areas with very large difference in height caused by the difference in the location of the projection centers. Color images can be related to the joint panchromatic scenes just based on tie points. Pan-sharpened images may show only small color shifts in very mountainous areas and for moving objects. The direct sensor orientation has to be calibrated based on control points. Discrepancies in horizontal shift can only be separated from attitude discrepancies with a good three-dimensional control point distribution. For such a calibration a program based on geometric reconstruction of the sensor orientation is required. The approximations by 3D-affine transformation or direct linear transformation (DL n cannot be used. These methods do have also disadvantages for standard sensor orientation. The image orientation by geometric reconstruction can be improved by self calibration with additional parameters for the analysis and compensation of remaining systematic effects for example caused by a not linear CCD-line. The determined sensor geometry can be used for the generation? of rational polynomial coefficients, describing the sensor geometry by relations of polynomials of the ground coordinates X, Y and Z.

  • PDF

Development of a highly effective T-DNA inserted mutant screening method in a Chinese cabbage (Brassica rapa L. spp. pekinensis) reverse genetics system

  • Lee, Gi-Ho;Kang, Yoon-Jee;Yi, Seul-Ki;Lim, Suk-Bin;Park, Young-Doo
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.201-211
    • /
    • 2010
  • We present a highly effective T-DNA inserted gene screening method as part of a reverse genetics model system using the Chinese cabbage (Brassica rapa L. spp. pekinensis). Three-step two-dimensional (2D) matrix strategies are potentially accurate and useful for the identification of specific T-DNA inserted mutants from a large population. To construct our Chinese cabbage model, we utilized a forward genetics screening approach for the abnormal phenotypes that were obtained from transgenic plants of Brassica rapa generated with Agrobacteria tumefaciens containing the pRCV2 vector. From one transgenic plant with an abnormal phenotype, we observed that the st1 gene (which is related to senescence-associated process proteins) contained a T-DNA fragment, and that its expression level was decreased. This T-DNA insert was then used as a control to construct an effective screening pool. As a result, the optimum template concentration was found to be 0.1-1 ng in our PCR strategy. For other conditions, positive changes to the Gibbs free energy prevented the formation of oligo dimers and hairpin loop structures, and autosegment extension gave better results for long fragment amplification. Using this effective reverse genetics screening method, only 23 PCR reactions were necessary to select a target gene from a pool of 100 individual DNAs. Finally, we also confirmed that the sequence we obtained from the above method was identical to the flanking sequence isolated by rescue cloning.

Evaluation of Accuracy and Inaccuracy of Depth Sensor based Kinect System for Motion Analysis in Specific Rotational Movement for Balance Rehabilitation Training (균형 재활 훈련을 위한 특정 회전 움직임에서 피검자 동작 분석을 위한 깊이 센서 기반 키넥트 시스템의 정확성 및 부정확성 평가)

  • Kim, ChoongYeon;Jung, HoHyun;Jeon, Seong-Cheol;Jang, Kyung Bae;Chun, Keyoung Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.228-234
    • /
    • 2015
  • The balance ability significantly decreased in the elderly because of deterioration of the neural musculature regulatory mechanisms. Several studies have investigated methods of improving balance ability using real-time systems, but it is limited by the expensive test equipment and specialized resources. Recently, Kinect system based on depth data has been applied to address these limitations. Little information about accuracy/inaccuracy of Kinect system is, however, available, particular in motion analysis for evaluation of effectiveness in rehabilitation training. Therefore, the aim of the current study was to evaluate accuracy/inaccuracy of Kinect system in specific rotational movement for balance rehabilitation training. Six healthy male adults with no musculoskeletal disorder were selected to participate in the experiment. Movements of the participants were induced by controlling the base plane of the balance training equipment in directions of AP (anterior-posterior), ML (medial-lateral), right and left diagonal direction. The dynamic motions of the subjects were measured using two Kinect depth sensor systems and a three-dimensional motion capture system with eight infrared cameras for comparative evaluation. The results of the error rate for hip and knee joint alteration of Kinect system comparison with infrared camera based motion capture system occurred smaller values in the ML direction (Hip joint: 10.9~57.3%, Knee joint: 26.0~74.8%). Therefore, the accuracy of Kinect system for measuring balance rehabilitation traning could improve by using adapted algorithm which is based on hip joint movement in medial-lateral direction.

SHM benchmark for high-rise structures: a reduced-order finite element model and field measurement data

  • Ni, Y.Q.;Xia, Y.;Lin, W.;Chen, W.H.;Ko, J.M.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.411-426
    • /
    • 2012
  • The Canton Tower (formerly named Guangzhou New TV Tower) of 610 m high has been instrumented with a long-term structural health monitoring (SHM) system consisting of over 700 sensors of sixteen types. Under the auspices of the Asian-Pacific Network of Centers for Research in Smart Structures Technology (ANCRiSST), an SHM benchmark problem for high-rise structures has been developed by taking the instrumented Canton Tower as a host structure. This benchmark problem aims to provide an international platform for direct comparison of various SHM-related methodologies and algorithms with the use of real-world monitoring data from a large-scale structure, and to narrow the gap that currently exists between the research and the practice of SHM. This paper first briefs the SHM system deployed on the Canton Tower, and the development of an elaborate three-dimensional (3D) full-scale finite element model (FEM) and the validation of the model using the measured modal data of the structure. In succession comes the formulation of an equivalent reduced-order FEM which is developed specifically for the benchmark study. The reduced-order FEM, which comprises 37 beam elements and a total of 185 degrees-of-freedom (DOFs), has been elaborately tuned to coincide well with the full-scale FEM in terms of both modal frequencies and mode shapes. The field measurement data (including those obtained from 20 accelerometers, one anemometer and one temperature sensor) from the Canton Tower, which are available for the benchmark study, are subsequently presented together with a description of the sensor deployment locations and the sensor specifications.

The influence of tunnelling on the behaviour of pre-existing piled foundations in weathered soil

  • Lee, Cheol-Ju;Jeon, Young-Jin;Kim, Sung-Hee;Park, Inn-Joon
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.553-570
    • /
    • 2016
  • A series of three-dimensional (3D) parametric finite element analyses have been performed to study the influence of the relative locations of pile tips with regards to the tunnel position on the behaviour of single piles and pile groups to adjacent tunnelling in weathered soil. When the pile tips are inside the influence zone, which considers the relative pile tip location with respect to the tunnel position, tunnelling-induced pile head settlements are larger than those computed from the Greenfield condition. However, when the pile tips are outside the influence zone, a reverse trend is obtained. When the pile tips are inside the influence zone, the tunnelling-induced tensile pile forces mobilised, but when the pile tips are outside the influence zone, compressive pile forces are induced because of tunnelling, depending on the shear stress transfer mechanism at the pile-soil interface. For piles connected to a cap, tensile and compressive forces are mobilised at the top of the centre and side piles, respectively. It has been shown that the increases in the tunnelling-induced pile head settlements have resulted in reductions of the apparent factor of safety up to approximately 43% when the pile tips are inside the influence zone, therefore severely affecting the serviceability of the piles. The pile behaviour, when considering the location of the pile tips with regards to the tunnel, has been analysed in great detail by taking the tunnelling-induced pile head settlements, axial pile forces, apparent factor of safety of the piles and shear transfer mechanism into account.

Characteristics of Magnetic Resonance(M.R.) and Comprehension of its Imaging Mechanism (자기공명(M.R.)진단법의 특징 및 그 영상기전의 이해)

  • Chang, Jae-Chun;Hwang, Mi-Soo;Kim, Sun-Yong
    • Journal of Yeungnam Medical Science
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 1987
  • Magnetic Resonance (M.R.) is rapidly emerging technique that provides high quality images and potentially provides much more diagnostic information than do conventional imaging modalities. M.R.I. is conceptually quite different from currently used imaging methods. The complex nature of M.R.I. allows a great deal of flexibility in image product ion and available information, and key points are as follows. 1. M.R.I. offers a non-invasive technique with which to gene rate in vivo human images without ionizing radiation and with no known adverse biological effects. 2. Imaging mechanism of M.R.I. is quite different from conventional imaging modality and for more accurate diagnostic application, It is necessary for physician to understand imaging mechanism of M.R.I. 3. M.R. makes available basic chemical parameters that may provide to be useful for diagnostic medical imaging and more specific pathophysiologic information which are not available by alternate techniques. 4. M.R. can be produced by number of different methods. This flexibility allows the imaging technique to be applicated for particular clinical purpose. Multiplanar and three dimensional imaging may extend the imaging process beyond the single section available with current CT. 5. Future directions include efforts to; a. Further development of hard ware b. More fasternning scan time c. Respiratory and cardiac gated imaging d. Imaging of additional nuclei except hydrogen e. Further development of contrast media f. M.R. in vivo spectroscopy g. Real time M.R. imaging.

  • PDF

Comparison of time and cost between conventional surgical planning and virtual surgical planning in orthognathic surgery in Korea

  • Park, Si-Yeon;Hwang, Dae-Seok;Song, Jae-Min;Kim, Uk-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.35.1-35.7
    • /
    • 2019
  • Background: The purpose of this study was to measure the time of the conventional surgical planning (CSP) and virtual surgical planning (VSP) in orthognathic surgery and to compare them in terms of cost. Material and method: This is a retrospective study of the patients who underwent orthognathic surgery at the Pusan National University Dental Hospital from December 2017 to August 2018. All the patients were analyzed through both CSP and VSP, and all the surgical stents were fabricated through manual and three-dimensional (3D) printing. The predictor variables were the planning method (CSP vs. VSP) and the surgery type (group I: Le Fort I osteotomy + bilateral sagittal split osteotomy [LFI+BSSO] or group II: only bilateral sagittal split osteotomy [BSSO]), and the outcomes were the time and cost. The results were analyzed using the paired t test. Results: Thirty patients (12 females, 18 males) met the inclusion criteria, and 17 patients were excluded from the study due to missing or incomplete data. There were 20 group I patients (LFI+BSSO regardless of genioplasty) and 10 group II patients (BSSO regardless of genioplasty). The average time of CSP for group I was 385 ± 7.8 min, and that for group II was 195 ± 8.33 min. The time reduction rate of VSP compared with CSP was 62.8% in group I and 41.5% in group II. On the other hand, there was no statistically significant cost reduction. Conclusions: The time investment in VSP in this study was significantly smaller than that in CSP, and the difference was greater in group I than in group II.

Effect of Grape Seed Proanthocyanidins on Tumor Vasculogenic Mimicry in Human Triple-negative Breast Cancer Cells

  • Luan, Yun-Yan;Liu, Zi-Min;Zhong, Jin-Yi;Yao, Ru-Yong;Yu, Hong-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.531-535
    • /
    • 2015
  • Vasculogenic mimicry (VM) refers to the unique ability of highly aggressive tumor cells to mimic the pattern of embryonic vasculogenesis, which was associated with invasion and metastasis. The grape seed proanthocyanidins (GSPs) had attracted much attention as a potential bioactive anti-carcinogenic agent. However, GSPs regulation of VM and its possible mechanisms in a triple-negative breast cancer cells (TNBCs) remain not clear. Therefore, we examined the effect of GSPs on VM information in HCC1937 cell model. In this study, we identified the VM structure via the three-dimensional (3D) matrix in vitro. Cell viability was measured using the CCK8 assay. The effects of GSPs on human triple-negative breast cancer cells (TNBCs) HCC1937 in terms of related proteins of VM information were determined using western blot analysis. In vitro, the tubular networks were found in highly invasive HCC1937 cells but not in the non-invasive MCF-7 cells when plated on matrigel. The number of vascular channels was significantly reduced when cells were exposed in GSPs ($100{\mu}g$/ml) and GSPs ($200{\mu}g/mL$) groups (all p<0.001). Furthermore, we found that treatment with GSPs promoted transition of the mesenchymal state to the epithelial state in HCC1937 cells as well as reducing the expression of Twist1 protein, a master EMT regulator.GSPs has the ability to inhibit VM information by the suppression of Twist1 protein that could be related to the reversal of epithelial-to-mesenchymal (EMT) process. It is firstly concluded that GSPs may be an p otential anti-VM botanical agent for human TNBCs.

Comparative Study of the Surface Roughness of Working Models Fabricated by Dental CAD/CAM Scannable Stone and Type IV Gypsum Products (치과용 캐드캠 스캔전용 석고와 Type IV 석고로 제작된 작업모형의 표면조도 비교 연구)

  • Kim, Sa-Hak;Kim, Jae-Hong
    • Journal of dental hygiene science
    • /
    • v.14 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • This study compared the surface roughness and surface characteristics between a type IV stone and scannable stone. Materials used were a type IV stone, two different kind of scannable stone. Ten specimens per experimental group were prepared according to manufacturer's direction. Surface roughness of specimen was measured using profilometer. The measurement was based on the standard of Japanese Industrial Standards 1994. The mean and standard deviations of each reference point were analyzed using one-way ANOVA and Scheff$\acute{e}$ post hoc test. The program used to handle statistical analysis was SPSS 20.0 and the significance level was set at 0.05. The difference of surface roughness was statistically significant in order of Scannable Stone $10.07{\pm}0.02{\mu}m$, Scannable Stone $20.08{\pm}0.03{\mu}m$, Type IV $0.10{\pm}0.04{\mu}m$. These results will have to be confirmed in further clinical application researches.

Nonlinear analysis of reinforced concrete beams strengthened with polymer composites

  • Pendhari, S.S.;Kant, T.;Desai, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 2006
  • Strengthening of existing old structures has traditionally been accomplished by using conventional materials and techniques, viz., externally bonded steel plates, steel or concrete jackets, etc. Alternatively, fibre reinforced polymer composite (FRPC) products started being used to overcome problems associated with conventional materials in the mid 1950s because of their favourable engineering properties. Effectiveness of FRPC materials has been demonstrated through extensive experimental research throughout the world in the last two decades. However there is a need to use refined analytical tools to simulate response of strengthened system. In this paper, an attempt has been made to develop a numerical model of strengthened reinforced concrete (RC) beams with FRPC laminates. Material models for RC beams strengthened with FRPC laminates are described and verified through a nonlinear finite element (FE) commercial code, with the help of available experimental data. Three dimensional (3D) FE analysis has been performed by assuming perfect bonding between concrete and FRPC laminate. A parametric study has also been performed to examine effects of various parameters like fibre type, stirrup's spacing, etc. on the strengthening system. Through numerical simulation, it has been shown that it is possible to predict accurately the flexural response of RC beams strengthened with FRPC laminates by selecting an appropriate material constitutive model. Comparisons are made between the available experimental results in literature and FE analysis results obtained by the present investigators using load-deflection and load-strain plots as well as ultimate load of the strengthened beams. Furthermore, evaluation of crack patterns from FE analysis and experimental failure modes are discussed at the end.