• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.038 seconds

Construction of the Geological Model around KURT area based on the surface investigations (지표 조사를 이용한 KURT 주변 지역의 지질모델구축)

  • Park, Kyung-Woo;Koh, Yong-Kwon;Kim, Kyung-Su;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.191-205
    • /
    • 2009
  • To characterize the geological features in the study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing several geological investigations such as geophysical surveys and borehole drillings since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep boreholes, which have 500 m depth inside the left research module of the KURT and 1,000 m depth outside the KURT, were drilled to confirm and validate the results from a geological model. The objective of this research was to investigate hydrogeological conditions using a 3-D geological model around the KURT. The geological analysis from the surface and borehole investigations determined four important geologicla elements including subsurface weathered zone, low-angled fractures zone, fracture zones and bedrock for the geological model. In addition, the geometries of these elements were also calculated for the three-dimensional model. The results from 3-D geological model in this study will be beneficial to understand hydrogeological environment in the study area as an important part of high-level radioactive waste disposal technology.

  • PDF

Comparative Analysis of Surgical Outcomes of C1-2 Fusion Spine Surgery between Intraoperative Computed Tomography Image Based Navigation-Guided Operation and Fluoroscopy-Guided Operation

  • Lee, Jun Seok;Son, Dong Wuk;Lee, Su Hun;Ki, Sung Soon;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.2
    • /
    • pp.237-247
    • /
    • 2020
  • Objective : Fixation of the C1-2 segment is challenging because of the complex anatomy in the region and the need for a high degree of accuracy to avoid complications. Preoperative 3D-computed tomography (CT) scans can help reduce the risk of complications in the vertebral artery, spinal cord, and nerve roots. However, the patient may be susceptible to injury if the patient's anatomy does not match the preoperative CT scans. The intraoperative 3D image-based navigation systems have reduced complications in instrument-assisted techniques due to greater accuracy. This study aimed to compare the radiologic outcomes of C1-2 fusion surgery between intraoperative CT image-guided operation and fluoroscopy-guided operation. Methods : We retrospectively reviewed the radiologic images of 34 patients who underwent C1-2 fusion spine surgery from January 2009 to November 2018 at our hospital. We assessed 17 cases each of degenerative cervical disease and trauma in a study population of 18 males and 16 females. The mean age was 54.8 years. A total of 139 screws were used and the surgical procedures included 68 screws in the C1 lateral mass, 58 screws in C2 pedicle, nine screws in C2 lamina and C2 pars screws, four lateral mass screws in sub-axial level. Of the 34 patients, 19 patients underwent screw insertion using intraoperative mobile CT. Other patients underwent atlantoaxial fusion with a standard fluoroscopy-guided device. Results : A total of 139 screws were correctly positioned. We analyzed the positions of 135 screws except for the four screws that performed the lateral mass screws in C3 vertebra. Minor screw penetration was observed in seven cases (5.2%), and major pedicle screw penetration was observed in three cases (2.2%). In one case, the malposition of a C2 pedicle screw was confirmed, which was subsequently corrected. There were no complications regarding vertebral artery injury or onset of new neurologic deficits. The screw malposition rate was lower (5.3%) in patients who underwent intraoperative CT-based navigation than that for fluoroscopy-guided cases (10.2%). And we confirmed that the operation time can be significantly reduced by surgery using intraoperative O-arm device. Conclusion : Spinal navigation using intraoperative cone-beam CT scans is reliable for posterior fixation in unstable C1-2 pathologies and can be reduced the operative time.

A Level-set Parameterization for Any 3D Complex Interface Related to a Fire Spread in Building Structures (복잡한 CAD 형상의 매개변수화를 통한 3차원 경계면 레벨-셋 알고리즘 개발 및 적용)

  • Kim, Hyun-Jun;Cho, Soo-Yeong;Lee, Young-hun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.135-146
    • /
    • 2020
  • To define an interface in a conventional level-set method, an analytical function must be revealed for an interfacial geometry. However, it is not always possible to define a functional form of level sets when interfaces become complex in a Cartesian coordinate system. To overcome this difficulty, we have developed a new level-set formalism that discriminates the interior from the exterior of a CAD modeled interface by parameterizing the stereolithography (STL) file format. The work outlined here confirms the accuracy and scalability of the hydrodynamic reactive solver that utilizes the new level set concept through a series of tests. In particular, the complex interaction between shock and geometrical confinements towards deflagration-to-detonation transition is numerically investigated. Also, a process of flame spreading and damages caused by point source detonation in a real-sized plant facility have been simulated to confirm the validity of the new method built for reactive hydrodynamic simulation in any complex three-dimensional geometries.

Object-Based Integral Imaging Depth Extraction Using Segmentation (영상 분할을 이용한 객체 기반 집적영상 깊이 추출)

  • Kang, Jin-Mo;Jung, Jae-Hyun;Lee, Byoung-Ho;Park, Jae-Hyeung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2009
  • A novel method for the reconstruction of 3D shape and texture from elemental images has been proposed. Using this method, we can estimate a full 3D polygonal model of objects with seamless triangulation. But in the triangulation process, all the objects are stitched. This generates phantom surfaces that bridge depth discontinuities between different objects. To solve this problem we need to connect points only within a single object. We adopt a segmentation process to this end. The entire process of the proposed method is as follows. First, the central pixel of each elemental image is computed to extract spatial position of objects by correspondence analysis. Second, the object points of central pixels from neighboring elemental images are projected onto a specific elemental image. Then, the center sub-image is segmented and each object is labeled. We used the normalized cut algorithm for segmentation of the center sub-image. To enhance the speed of segmentation we applied the watershed algorithm before the normalized cut. Using the segmentation results, the subdivision process is applied to pixels only within the same objects. The refined grid is filtered with median and Gaussian filters to improve reconstruction quality. Finally, each vertex is connected and an object-based triangular mesh is formed. We conducted experiments using real objects and verified our proposed method.

Assessment of Radionuclide Deposition on Korean Urban Residential Area

  • Lee, Joeun;Han, Moon Hee;Kim, Eun Han;Lee, Cheol Woo;Jeong, Hae Sun
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.101-107
    • /
    • 2020
  • Background: An important lesson learned from the Fukushima accident is that the transition to the mid- and long-term phases from the emergency-response phase requires less than a year, which is not very long. It is necessary to know how much radioactive material has been deposited in an urban area to establish mid- and long-term countermeasures after a radioactive accident. Therefore, an urban deposition model that can indicate the site-specific characteristics must be developed. Materials and Methods: In this study, the generalized urban deposition velocity and the subsequent variation in radionuclide contamination were estimated based on the characteristics of the Korean urban environment. Furthermore, the application of the obtained generalized deposition velocity in a hypothetical scenario was investigated. Results and Discussion: The generalized deposition velocities of 137Cs, 106Ru, and 131I for each residence type were obtained using three-dimensional (3D) modeling. For all residence types, the deposition velocities of 131I are greater than those of 106Ru and 137Cs. In addition, we calculated the generalized deposition velocities for each residential types. Iodine was the most deposited nuclide during initial deposition. However, the concentration of iodine in urban environment drastically decreases owing to its relatively shorter half-life than 106Ru and 137Cs. Furthermore, the amount of radioactive material deposited in nonresidential areas, especially in parks and schools, is more than that deposited in residential areas. Conclusion: In this study, the generalized urban deposition velocities and the subsequent deposition changes were estimated for the Korean urban environment. The 3D modeling was performed for each type of urban residential area, and the average deposition velocity was obtained and applied to a hypothetical accident. Based on the estimated deposition velocities, the decision-making systems can be improved for responding to radioactive contamination in urban areas. Furthermore, this study can be useful to predict the radiological dose in case of large-scale urban contamination and can support decision-making for long-term measurement after nuclear accident.

Optimal Design of Permanent Magnet Thrust Bearings (영구자석형 스러스트 베어링의 최적 설계)

  • Yoo, Seong-Yeol;Kim, Woo-Yeon;Kim, Seung-Jong;Lee, Wook-Ryun;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 2011
  • In this paper, we describe a process for optimally designing a ring-type permanent magnet thrust bearing. The bearing consists of two sets of permanent magnet rings. One set is located inside the other set. An axial offset between the two sets creates axial force, which results in a thrust bearing function. In order to realize an optimal design of the bearing where the required load capacity of the bearing is achieved with the least magnet volume, we derived analytical design equations by adopting the equivalent current sheet (ECS) method. We considered the following two types of magnet arrays: axial arrays and Halbach arrays. These two types of arrays are optimized using the analytical design equations. The results of the optimization are verified using three dimensional (3D) finite element analyses (FEA). The results show that the Halbach array can achieve the required load capacity with less amount of permanent magnet than the axial array does. The efficacy of the ECS method is also verified by using 3D FEA. It is found that the accuracy of ECS method is more sensitive to the underlying assumptions for the Halbach array than for the axial array.

Feature-based Non-rigid Registration between Pre- and Post-Contrast Lung CT Images (조영 전후의 폐 CT 영상 정합을 위한 특징 기반의 비강체 정합 기법)

  • Lee, Hyun-Joon;Hong, Young-Taek;Shim, Hack-Joon;Kwon, Dong-Jin;Yun, Il-Dong;Lee, Sang-Uk;Kim, Nam-Kug;Seo, Joon-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.237-244
    • /
    • 2011
  • In this paper, a feature-based registration technique is proposed for pre-contrast and post-contrast lung CT images. It utilizes three dimensional(3-D) features with their descriptors and estimates feature correspondences by nearest neighborhood matching in the feature space. We design a transformation model between the input image pairs using a free form deformation(FFD) which is based on B-splines. Registration is achieved by minimizing an energy function incorporating the smoothness of FFD and the correspondence information through a non-linear gradient conjugate method. To deal with outliers in feature matching, our energy model integrates a robust estimator which discards outliers effectively by iteratively reducing a radius of confidence in the minimization process. Performance evaluation was carried out in terms of accuracy and efficiency using seven pairs of lung CT images of clinical practice. For a quantitative assessment, a radiologist specialized in thorax manually placed landmarks on each CT image pair. In comparative evaluation to a conventional feature-based registration method, our algorithm showed improved performances in both accuracy and efficiency.

Interconnection Process and Electrical Properties of the Interconnection Joints for 3D Stack Package with $75{\mu}m$ Cu Via ($75{\mu}m$ Cu via가 형성된 3D 스택 패키지용 interconnection 공정 및 접합부의 전기적 특성)

  • Lee Kwang-Yong;Oh Teck-Su;Won Hye-Jin;Lee Jae-Ho;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.111-119
    • /
    • 2005
  • Stack specimen with three dimensional interconnection structure through Cu via of $75{\mu}m$ diameter, $90{\mu}m$ height and $150{\mu}m$ pitch was successfully fabricated using subsequent processes of via hole formation with Deep RIE (reactive ion etching), Cu via filling with pulse-reverse electroplating, Si thinning with CMP, photolithography, metal film sputtering, Cu/Sn bump formation, and flip chip bonding. Contact resistance of Cu/Sn bump and Cu via resistance could be determined ken the slope of the daisy chain resistance vs the number of bump joints of the flip chip specimen containing Cu via. When flip- chip bonded at $270^{\circ}C$ for 2 minutes, the contact resistance of the Cu/Sn bump joints of $100{\times}100{\mu}m$ size was 6.7m$\Omega$ and the Cu via resistance of $75{\mu}m$ diameter, $90{\mu}m$ height was 2.3m$\Omega$.

  • PDF

Microscopic Evacuation Simulation in Large-scale Buildings using EgresSIM (EgresSIM을 이용한 대형건축물의 미시적 대피시뮬레이션)

  • Kwak, Suyeong;Nam, Hyunwoo;Jun, Chulmin
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2016
  • This paper introduces 'EgresSIM', which is microscopic evacuation simulation software. EgresSIM developed in this paper is a three-dimensional (3D) pedestrian evacuation simulator based on the improved model advanced from the floor field model(FFM), a microscopic pedestrian model. This software can simulate large size buildings that consist of a number of floors, stairs, rooms, and exit doors. Moreover, this software can arrange several hundreds or thousands of pedestrians in indoor space and check their movements through the 3D viewer in real time, as well as produce detailed results about evacuation situations such as which paths are employed by individual pedestrians, how long does it takes to evacuate, and how many evacuees are gathered at each of the exit doors. Building data needed in the simulation are constructed as XML files according to pre-defined indoor data models and information of simulation results is also created as XML log files. A moving pattern of pedestrians can be represented in many ways by adjusting the sensitivity parameters of two walk models supported by EgresSIM. Thus, evacuation simulation can be done based on many assumptions of situations such as movement to the nearest exit door or blackout after outage.

A Study on the Behaviour of Single Piles to Adjacent Tunnelling in Stiff Clay (견고한 점토층에서 실시된 터널근접시공으로 인한 단독말뚝의 거동에 대한 연구)

  • Jeon, Youngjin;Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.13-22
    • /
    • 2015
  • In the current work, a series of three-dimensional (3D) numerical modelling has been performed in order to study the effects of the relative locations of tunnels with respect to the position of pile tips which governs the behaviour of pre-existing, adjacent single piles. In the numerical analyses, several governing factors, such as tunnelling-induced pile head settlements, relative displacements, volume losses, axial pile forces, interface shear stresses and apparent factors of safety have been analysed. When the pile tips are inside the tunnelling influence zone, of which the pile tip location is considered with respect to the tunnel position, tunnelling-induced pile head settlements are larger than the ground surface settlements, resulting in tunnelling-induced tensile pile forces. On the contrary, when the pile tips are outside the influence zone, compressive pile forces associated with downward shear stresses at the upper part of the piles are developed. Based on computed load and displacement relation of the pile, the apparent factors of safety of the piles inside the tunnelling influence zone have been reduced by 36% in average. The shear transfer mechanism based on the relative tunnel locations has been analysed in great detail by considering tunnelling-induced pile forces, interface shear stresses and the apparent factors of safety.