• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.037 seconds

ACCURACY OF THE IMPRESSION TECHNIQUE USING THERMOFORMING POLYMETHYL METHACRYLATE TRAY

  • Miyashita, Yuko;Suzuki, Hiroki;Kishi, Masataka;Ko, Sok-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.389-400
    • /
    • 2007
  • Statement of problem. Use of the conventional dental impression procedure is problematic in patients who have difficulty opening their mouth, difficulty breathing through their nose or tendency to gag. Purpose. It is necessary to make individual trays more comfortable for patients during impression taking procedure. It was reported at the KAP Annual Meeting 2001 Seoul that an improved impression technique was suitable for this purpose. In this study, the accuracy of the improved dental impression method for implant was compared with the conventional dental impression method. Material and methods. An oral simulator was made from clear acrylic resin block which had similar form of edentulous ridge. For setting up the standard, five fixtures were installed on it. Study casts were made using two kinds of impression techniques. One was the conventional method that was taken using silicone impression material and an individual resin tray under connection of inter-fixture relation. The other was the improved method in which was the connection of the impression coping and the thermoformed polymethyl methacrylate tray. In addition, two different study casts were made from the improved impression body. The coordinates of the fixture on the study model were measured by three-dimensional coordinate measuring equipment. Then the distances between each fixture were calculated and compared with that of oral simulator. Accuracy of the each impression method was also assessed. Results. The differences of inter-fixture dimension between study casts and simulator in the improved impression technique showed $0.014{\pm}0.016mm$ and $0.017{\pm}0.022mm$, respectively and that of the conventional method was $0.017{\pm}0.014mm$. There was no significant difference between the improved impression technique and conventional method. Conclusion. The improved impression technique is useful for multiple support implants.

Numerical Analyses on Moment Resisting Behaviors of Electric Pole Foundations According to Their Shapes (기초형상에 따른 전철주기초 모멘트 저항거동에 관한 수치해석 연구)

  • Lee, Su-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.85-97
    • /
    • 2013
  • Electric pole foundations for overhead catenary system of railroad should be designed so that they may resist significant overturning moment but relatively small vertical forces. Also they should have proper shapes to be installed at restricted narrow areas adjacent to railroad track. In this paper the moment responses of rectangular pole foundations according to their shapes were investigated numerically. A three-dimensional finite element method was developed and verified so that the numerical behaviors of the foundation resisting the overturning moments were compared reasonably well with those from an existing real-scale load test. The influences of aspect ratio, varying section with depth and loading directions for rectangular section were investigated using the developed numerical method. From the numerical results, the optimized shapes of pole foundation for more effective and economic installation adjacent to railroad track are proposed.

Wind velocity field during thunderstorms

  • Ponte, Jacinto Jr.;Riera, Jorge D.
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.287-300
    • /
    • 2007
  • Wind action is a factor of fundamental importance in the structural design of light or slender constructions. Codes for structural design usually assume that the incident mean wind velocity is parallel to the ground, which constitutes a valid simplification for frequent winds caused by meteorological phenomena such as Extratropical Storms (EPS) or Tropical Storms. Wind effects due to other phenomena, such as thunderstorms, and its combination with EPS winds in so-called squall lines, are simply neglected. In this paper a model that describes the three-dimensional wind velocity field originated from a downburst in a thunderstorm (TS) is proposed. The model is based on a semi empirical representation of an axially-symmetrical flow line pattern that describes a stationary field, modulated by a function that accounts for the evolution of the wind velocity with time. The model allows the generation of a spatially and temporally variable velocity field, which also includes a fluctuating component of the velocity. All parameters employed in the model are related to meteorological variables, which are susceptible of statistical assessment. A background wind is also considered, in order to account for the translational velocity of the thunderstorm, normally due to local wind conditions. When the translation of the TS is caused by an EPS, a squall line is produced, causing the highest wind velocities associated with TS events. The resulting vertical velocity profiles were also studied and compared with existing models, such as the profiles proposed by Vicroy, et al. (1992) and Wood and Kwok (1998). The present model predicts horizontal velocity profiles that depend on the distance to the storm center, effect not considered by previous models, although the various proposals are globally compatible. The model can be applied in any region of interest, once the relevant meteorological variables are known, to simulate the excitation due to TS winds in the design of transmission lines, long-span crossings, cable-stayed bridges, towers or similar structures.

The structural changes of pharyngeal airway contributing to snoring after orthognathic surgery in skeletal class III patients

  • Park, Jung-Eun;Bae, Seon-Hye;Choi, Young-Jun;Choi, Won-Cheul;Kim, Hye-Won;Lee, Ui-Lyong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.22.1-22.9
    • /
    • 2017
  • Background: Two-jaw surgery including mandibular and maxillary backward movement procedures are commonly performed to correct class III malocclusion. Bimaxillary surgery can reposition the maxillofacial bone together with soft tissue, such as the soft palate and the tongue base. We analyzed changes of pharyngeal airway narrowing to ascertain clinical correlations with the prevalence of snoring after two-jaw surgery. Methods: A prospective clinical study was designed including a survey on snoring and three-dimensional (3D) computed tomography (CT) in class III malocclusion subjects before and after bimaxillary surgery. We conducted an analysis on changes of the posterior pharyngeal space find out clinical correlations with the prevalence of snoring. Results: Among 67 subjects, 12 subjects complained about snoring 5 weeks after the surgical correction, and examining the 12 subjects after 6 months, 6 patients complained about the snoring. The current findings demonstrated the attenuation of the largest transverse width (LTW), anteroposterior length (APL), and cross-sectional area (CSA) following bimaxillary surgery given to class III malocclusion patients, particularly at the retropalatal level. The average distance of maxillary posterior movements were measured to be relatively higher (horizontal distance 3.9 mm, vertical distance 2.6 mm) in case of new snorers. Conclusions: This study found that bimaxillary surgery could lead to the narrowing of upper airway at the retropalatal or retroglossal level as well as triggering snoring in subjects with class III malocclusion. Based on the current clinical findings, we also found that upper airway narrowing at retropalatal level may contribute to increasing the probability of snoring and that polysonography may need to be performed before orthognathic surgery in subjects with class III malocclusion.

Magnetotelluric modeling considering vertical transversely isotropic electrical anisotropy (수직 횡등방성 전기적 이방성을 고려한 자기지전류탐사 모델링)

  • Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.232-240
    • /
    • 2015
  • Magnetotelluric (MT) survey investigates electrical structure of subsurface by measuring natural electromagnetic fields on the earth surface. For the accurate interpretation of MT data, the precise three-dimensional (3-D) modeling algorithm is prerequisite. Since MT responses are affected by electrical anisotropy of medium, the modeling algorithm has to incorporate the electrical anisotropy especially when analyzing time-lapse MT data sets, for monitoring engineered geothermal system (EGS) reservoir, because changes in different-vintage MT-data sets are small. This study developed a MT modeling algorithm for the simulation MT responses in the presence of electrical anisotropy by improving a pre-existing staggered-grid finite-difference MT modeling algorithm. After verifying the developed algorithm, we analyzed the effect of vertical transversely isotropic (VTI) anisotropy on MT responses. In addition, we are planning to extend the applicability of the developed algorithm which can simulate not only the horizontal transversely isotropic (HTI) anisotropy, but also the tiled transversely isotropic (TTI) anisotropy.

Numerical Analysis of Welding Residual Stresses for Ultra-Thick Plate of EH40 Steel Joined by Tandem EGW (극후판 EH40 TMCP강재 Tandem EGW 용접부의 잔류응력 해석)

  • Hwang, Se-Yun;Lee, Jang-Hyun;Kim, Byung-Jong;Yang, Yong-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.821-830
    • /
    • 2010
  • Deck plates and hatch coming of large container carrier and offshore structures are joined by ultra-thick plates whose thickness is more than 60mm. Traditionally FCAW has been used to join the thick plates in butt joint. However, FCAW has been replaced with EGW since the welding efficiency of EGW is higher than that of FCAW. Tandem EGW using two electrodes has been applied to vertical position welding by several shipyards. EGW requires one or two layers of bead whereas FCAW requires more than 20 layers of weld bead in thick welding. However, high welding residual stresses are generated by EGW since it uses higher heat input than FCAW. In the present study, a finite element model is suggested to predict the residual stresses induced by the tandem EGW. Butt specimen of EH40 TMCP shipbuilding steel plates vertical welding was modeled by a three-dimensional model. Residual stresses were measured by X-ray diffraction method and to verify the numerical result. The results show a good agreement with experimental result.

Characteristics of Snowfall Event with Radar Analyses over Honam District and Gwangju Occurred by Cloud Streets over Yellow Sea for 04 Jan. 2003 (서해상에 발생하는 Cloud Streets에 동반된 2003년 1월 4일 강설의 레이더관측사례 분석)

  • Shin, Ki-Chang;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1187-1201
    • /
    • 2010
  • The formation and development conditions of the cloud streets over the yellow sea by the Cold Surge of Siberian Anticyclone Expansion which produce the heavy snowfall events over the southwestern coast, Honam District of the Korean peninsula, has been investigated through analyses of the three dimensional snow cloud structures by using the CAPPI, RHI, VAD and VVP data of X-band Radar at Muan Weather Observatory and S-band Radar at Jindo Weather Station. The data to be used are obtained from January 04, 2003, when heavy snow storm hits on Gwangju and Honam District. The PPI Radar images show that the cloud bands distribute in perpendicular to the expansion direction of the high pressure and that the radius of cloud cells is about 5~8 km with 20~30 dBz and distance between each cell is about 10 km. And but the vertical Radar images show that the cloud street is a small scale convective type cloud within height of about 3 km where a stable layer exists. From the VVP images, the time period of the high pressure expansion, the moving direction and development stages of the system are delineated. Finally, the vertical distribution of wind direction is fairly constants, while the wind speed sheer increases with altitude to 3 km.

Flow Investigations in the Crossover System of a Centrifugal Compressor Stage

  • Reddy, K. Srinivasa;Murty, G.V. Ramana;Dasgupta, A.;Sharma, K.V.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • The performance of the crossover system of a centrifugal compressor stage consisting of static components of $180^{\circ}$ U-bend, return channel vanes and exit ducting with a $90^{\circ}$ bend is investigated. This study is confined to the assessment of performance of the crossover system by varying the shape of the return channel vanes. For this purpose two different types of Return Channel Vanes (RCV1 and RCV2) were experimentally investigated. The performance of the crossover system is discussed in terms of total pressure loss coefficient, static pressure recovery coefficient and vane surface pressure distribution. The experimentation was carried out on a test setup in which static swirl vanes were used to simulate the flow at the exit of an actual centrifugal compressor impeller with a design flow coefficient of 0.053. The swirl vanes are connected to a mechanism with which the flow angle at the inlet of U-bend could be altered. The measurements were taken at five different operating conditions varying from 70% to 120% of design flow rate. On an overall assessment RCV1 is found to give better performance in comparison to RCV2 for different U-bend inlet flow angles. The performance of RCV2 was verified using numerical studies with the help of a CFD Code. Three dimensional sector models were used for simulating the flow through the crossover system. The turbulence was predicted with standard k-$\varepsilon$, 2-equation model. The iso-Mach contour plots on different planes and development of secondary flows were visualized through this study.

Marine Environmental Characteristics of Seagrass Habitat in Seomjin River Estuary (섬진강 하구역 잘피(Z. marina)서식지의 해양환경 특성)

  • Ji, Hyeong-Seok;Seo, Hee-Jeong;Kim, Myeong-Won;Lee, Moon Ock;Kim, Jongkyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.236-244
    • /
    • 2014
  • This study considered a seagrass habitat in order to analyze the characteristics of a marine environment of seagrass located in the Seomjin river estuary, through an analysis of the distribution of the water depth, field observation, and three-dimensional numerical experiments using an EFDC model. The seagrass habitat was usually distributed at D.L(-) 0.5~0.0 m, and was hardly seen in the intertidal zone higher than that range. The distribution of the water temperature was within the range of $7.0{\sim}23.2^{\circ}C$, and the seagrass was demonstrated to have a strong tolerance to changes in the water temperature. In addition, the salinity distribution was found to be 27.2~31.0 psu, with suspended solids of 32.1 mg/L, which were higher than the previous research results (Huh et al., 1998), implying that there may be a reduction in the amount of deposits caused by the suspended solids. As for the sedimentary facies, they were comprised of 62.7% sand, 19.1% silt, and 18.2% clay, indicating that the arenaceous was superior and the sedimentary facies were similar to that of Dadae Bay. According to a numerical experiment, the maximum tidal current was 75 cm/s, while the tidal residual current was 10 cm/s, confirming that it sufficiently adapted to strong tidal currents. The erosion and deposition are predicted to be less than 1.0 cm/year. Thus, it is judged that the resuspension of sediments due to tidal currents and the changes in sedimentary facies are insignificant.

Numerical modeling of uplift resistance of buried pipelines in sand, reinforced with geogrid and innovative grid-anchor system

  • Mahdi, Majid;Katebi, Hooshang
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.757-774
    • /
    • 2015
  • Reinforcing soils with the geosynthetics have been shown to be an effective method for improving the uplift capacity of granular soils. The pull-out resistance of the reinforcing elements is one of the most notable factors in increasing the uplift capacity. In this paper, a new reinforcing element including the elements (anchors) attached to the ordinary geogrid for increasing the pull-out resistance of the reinforcement, is used. Thus, the reinforcement consists of the geogrid and anchors with the cylindrical plastic elements attached to it, namely grid-anchors. A three-dimensional numerical study, employing the commercial finite difference software FLAC-3D, was performed to investigate the uplift capacity of the pipelines buried in sand reinforced with this system. The models were used to investigate the effect of the pipe diameter, burial depth, soil density, number of the reinforcement layers, width of the reinforcement layer, and the stiffness of geogrid and anchors on the uplift resistance of the sandy soils. The outcomes reveal that, due to a developed longer failure surface, inclusion of grid-anchor system in a soil deposit outstandingly increases the uplift capacity. Compared to the multilayer reinforcement, the single layer reinforcement was more effective in enhancing the uplift capacity. Moreover, the efficiency of the reinforcement layer inclusion for uplift resistance in loose sand is higher than dense sand. Besides, the efficiency of reinforcement layer inclusion for uplift resistance in lower embedment ratios is higher. In addition, by increasing the pipe diameter, the efficiency of the reinforcement layer inclusion will be lower. Results demonstrate that, for the pipes with an outer diameter of 50 mm, the grid-anchor system of reinforcing can increase the uplift capacity 2.18 times greater than that for an ordinary geogrid and 3.20 times greater than that for non-reinforced sand.