• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.033 seconds

Nonlinear Analysis of 3-D Steel Frames (3차원 강뼈대구조의 비선형 해석)

  • Kim, Seung Eock;Kim, Yo Suk;Choi, Se Hyu;Kim, Sung Mo;Choi, Joon Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.417-424
    • /
    • 1999
  • In this paper a nonlinear analysis of three-dimensional steel frames is developed. This analysis accounts for material and geometric nonlinearities. The material nonlinearity includes gradual yielding associated with flexural behaviors. The geometric nonlinearity includes the second-order effects associated with $P-{\delta}\;and\;P-{\Delta}$ effects. The material nonlinearity at the node is considered using the concept of P-M hinge consisting of many fibers. The geometric nonlinearity is considered by the use of stability function. The nonlinearity caused by shear and torsional interaction effects is neglected. The modified incremental displacement method is used as the solution technique. The load-displacements predicted by the proposed analysis compare well with those given by other approaches.

  • PDF

Compression and Shear Capacity of Rubber Bearings with Various Geometric Parameters (다양한 기하학적 인자를 고려한 고무받침의 압축 및 전단 내력)

  • Park, Ji Yong;Kim, Joo Woo;Jung, Hie Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.559-570
    • /
    • 2014
  • In this study, compression and shear characteristics of laminated rubber bearings and lead rubber bearings with various parameters are investigated by using material and geometric nonlinear three-dimensional finite element analysis. Rubber coupon tests are performed to make a model of the laminated rubber bearings. In addition, the material constants of the rubber are calculated by the curve fitting process of stress-strain relationship. The finite element analysis and experimental tests of the laminate rubber bearings are used to verify the validity of the rubber material constants. It is seen that the compression behavior of the laminated rubber bearings and lead rubber bearings mainly varies depending on the first shape factors and their shear behavior significantly varies depending on the second shape factors. In addition, the horizontal stiffness and energy dissipation capacity of lead rubber bearing are increased when the diameter of a lead bar is increased.

FTFM: An Object Linkage Model for Virtual Reality (가상현실을 위한 객체 연결 모델)

  • Ju, U-Seok;Choe, Seong-Un;Park, Gyeong-Hui;Lee, Hui-Seung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.95-106
    • /
    • 1996
  • The most fundamental difference between general three dimensional computer graphics technology and virtual reality technology lies in the degree of realism as we feel, and thus the virtual reality method heavily relies on such tolls as data gloves, 3D auditory system to enhance human perception and recognition. Although these tolls are valid for such purpose, more essential ingredient. This paper provides further realism by modeling active interactions between the objects inside scenes. For this purpose, this paper proposes and implements a field model where the virtual reality space is treated as a physical field defined on the characteristic radius of stimulus and sense corresponding to the individual object. In the field model, the rule of cause and effect as an essential feature of the realism can be interpreted simply as an energy exchange between objects and consequently, variation on the radius information together with behavioral logic alone can build the virtual environment where each object can react to other objects actively and controllably.

  • PDF

Reproducibility Evaluation of Stratification Using EFDC Model in Nakdong River (EFDC 모형을 이용한 낙동강에서의 성층현상 재현성 평가)

  • Choi, Hyun Gu;Han, Kun Yeun;Park, Jun Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.561-573
    • /
    • 2017
  • Nakdong River was recently dredged with multi-functional weirs construction. Therefore, the depth was deepened and the lag time also increased. As a result, stratification occurred in some sections with deep water depth, and it also caused the increase of algal bloom phenomenon. The purpose of this study is to evaluate reproducibility of stratification in the Nakdong River by applying the EFDC model, which is a three-dimensional hydraulic and water quality analysis model proving the reproducibility of stratification phenomena in reservoirs and estuaries. In order to reproduce the Nakdong river water temperature and DO stratification, EFDC model was constructed in the downstream part of the Nakdong river and sensitivity analysis was performed on key parameters sensitive to stratification. Sensitivity analysis was used to reproduce stratification by selecting optimal parameters. The results of this study can be used as basic data for the analysis of various destratification scenarios.

Effect of orientation of fracture zone on tunnel behavior - Numerical Investigation (파쇄대의 공간적 분포가 터널 거동에 미치는 영향 - 수치해석 연구)

  • Yoo, Chung-Sik;Cho, Yoon-Gyu;Park, Jung-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.253-270
    • /
    • 2013
  • This paper concerns the effect of orientation and geometric characteristics of a fracture zone on the tunnel behavior using a numerical investigation. A parametric study was executed on a number of drill and blast tunnelling cases representing different fracture and tunnelling conditions using two and three dimensional finite element analyses. The variables considered include the strike and dip angle of fracture zone relative to the longitudinal tunnel axis, the width and the clearance of the fracture zone, the tunnel depth, and the initial lateral stress coefficient. The results of the analyses were examined in terms of the tunnel deformation including crown settlement, convergence, and invert heave as well as shotcrete lining stresses. The results indicate that the tunnel deformation as well as the shotcrete lining stress are strongly influenced by the orientation of the fracture zone, and that such a trend becomes more pronounced for tunnels with greater depths.

Development of Evaluation Techniques on Marine Casualties by Ship's Signal Sound Interferences(l) - 3D Sound Field Control Model - (선박신호음 간섭에 따른 해양사고 영향평가기법 개발(1) - 3차원 음장제어 모델 -)

  • Yim Jeong Bin;Jung Jung Sik;Park Seong Hyeon;Kim Chang Kyeong;Sim Yeong Ho;Lee Ku Dong;Choi Ki Yeong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.45-51
    • /
    • 2003
  • The ship's signal sound dispersed by air, obstacles, and noises due to absorption, reflection, and disturbances, respectively. It is one of the factors of marine casualties by misjudgment if receiving direction The last target of this study is to prevent inherent marine casualty using the analysis-evaluation techniques if the interferences of ship's signal sound. In this work, three-dimensional sound field control model is proposed to simulate various sound transmitting characteristics according to sea environments at sea The efficiency test of the model was carried out using VR-based ship simulator.

  • PDF

Simulations of Pollutant Mixing Regimes in Seamangeum Lake According to Seawater Exchange Rates Using the EFDC Model (EFDC모형을 이용한 새만금호 내 해수유통량에 따른 오염물질 혼합 변화 모의)

  • Jeong, Hee-Young;Ryu, In-Gu;Chung, Se-Woong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.53-62
    • /
    • 2009
  • The EFDC (Environmental Fluid Dynamics Code), a numerical model for simulating three-dimensional (3D) flow, transport, and biogeochemical processes in surface water systems including rivers, reservoirs, and estuaries, was applied to assess the effect of sea water and fresh water exchange rates ($Q_e$) on the mixing characteristics of a conservative pollutant (tracer) induced from upstreams and salinity in Saemangeum Lake, Korea. The lake has been closed by a 33 km estuary embankment since last April of 2006, and now seawater enters the lake partially through two sluice gates (Sinsi and Garyuk), which is driving the changes of hydrodynamic and water quality properties of the lake. The EFDC was constructed and calibrated with surveyed bathymetry data and field data including water level, temperature, and salinity in 2008. The model showed good agreement with the field data and adequately replicated the spatial and temporal variations of the variables. The validated model was applied to simulated the tracer and salinity with two different gate operation scenarios: RUN-1 and RUN-2. RUN-1 is the case of real operation condition ($Q_e=25,000,000\;m^3$) of 2008, while RUN-2 assumed full open of Sinsi gate to increase $Q_e$ by $120,000,000\;m^3$. Statistical analysis of the simulation results indicate that mixing characteristics of pollutants from upstream can be significantly affected by the amount of $Q_e$.

An Otimal Path Determination in 3D Sensor Networks (3차원 무선 센서네트워크에서 최적경로 선정)

  • Kim, Kyung-Jun;Park, Sun;Kim, Chul-Won;Park, Jong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1931-1938
    • /
    • 2012
  • A by-pass path in wireless sensor networks is the alternative path which be able to forward data when a routing path is being broken. One reason of depleting energy is occurred by the path. The method for solving prior to addressed the problem is proposed. However, this method may deplete radio resource. The best path has advantage that network lifetime of sensor nodes is prolonged; on the contrary, in order to maintain the best path it have to share their information between the entire nodes. In this paper, we propose the best path searching algorithm in the distributed three dimensional sensor networks. Through the neighboring informations sharing in the proposed method, the proposed algorithm can decide the best k-path as well as the extension of network lifetime.

The Kinematic Comparison of Energy Walking and Normal Walking (에너지보행과 일반보행의 운동학적 비교)

  • Shin, Je-Min;Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.61-71
    • /
    • 2006
  • The purpose of this study was to compare kinematic characteristics on the limbs at 3 different walking speed during the energy and the normal walking. Eight subjects performed energy walking and normal walking at the slow speed(65 beats/min), the normal speed(115beats/min), the fast speed(160 beats/min). The 3-d angle was calculated by vector projected with least squares solution with three-dimensional cinematography(Motion Analysis corporation). The range of motion was calculated on the trunk, shoulder, elbow, hip, knee joint. The results showed that stride length was no difference of the two walking pattern. The duration of support phase was also no difference of the two walking pattern. The range of motion of shoulder joint significantly increased in the sagittal and frontal planes, and the range of motion of elbow joint significantly increased as the energy walking. The range of motion of hip joint had no significant difference in the any planes in changing of walking speed. But the most remarkable difference of the two walking patterns revealed at the trunk. The range of flexion/extension angle had significant increasing $2.36^{\circ}$ at normal speed, and the range of the right/left flexion angle had significant increasing below $4^{\circ}$ at the 3 walking speed, and The range of rotation angle had significant increasing $7.35^{\circ}$, $9.22^{\circ}$, respectively at the normal and slow speed. But there was no significant difference of range of motion at the hip and knee joints between energy walking and normal walking.

A Study on Flow Characteristics according to Meandering Low Flow Channel Shape in the Compound Cross Section Typed Straight Channel (복단면인 직선수로 내 사행 저수로의 형태에 따른 흐름특성 연구)

  • Kim, Seonghwan;Choi, Gyewoon
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.484-490
    • /
    • 2017
  • In order to examine flow characteristics according to the shape of the meandering low flow channel in the compound cross section typed straight channel, we assumed the representative channel type in Korea and confirmed the validity of the 3D numerical simulation by carrying out the hydraulic model. Based on this study, numerical simulations were also conducted on other types of river channel. As a result of the numerical model test (using the velocity value measured by the water depth observation from the hydraulic model test), it was confirmed that the numerical simulation results are in good agreement with the numerical simulation results. As a result of analyzing the flow field according to the changes in the shape of the low flow channel, it was confirmed that the secondary flow examined in the previous studies occurred. Also, it was confirmed that the maximum flow velocity point moves according to the expansion cross sectional area of flow in high flow plain. Ultimately, it is thought that it is necessary to understand the position of the water impingement (which is an important factor in river design) and the extent of the impact because the change of the channel width affects the flow.