• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.036 seconds

ROUTE/DASH-SRD based Point Cloud Content Region Division Transfer and Density Scalability Supporting Method (포인트 클라우드 콘텐츠의 밀도 스케일러빌리티를 지원하는 ROUTE/DASH-SRD 기반 영역 분할 전송 방법)

  • Kim, Doohwan;Park, Seonghwan;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.849-858
    • /
    • 2019
  • Recent developments in computer graphics technology and image processing technology have increased interest in point cloud technology for inputting real space and object information as three-dimensional data. In particular, point cloud technology can accurately provide spatial information, and has attracted a great deal of interest in the field of autonomous vehicles and AR (Augmented Reality)/VR (Virtual Reality). However, in order to provide users with 3D point cloud contents that require more data than conventional 2D images, various technology developments are required. In order to solve these problems, an international standardization organization, MPEG(Moving Picture Experts Group), is in the process of discussing efficient compression and transmission schemes. In this paper, we provide a region division transfer method of 3D point cloud content through extension of existing MPEG-DASH (Dynamic Adaptive Streaming over HTTP)-SRD (Spatial Relationship Description) technology, quality parameters are further defined in the signaling message so that the quality parameters can be selectively determined according to the user's request. We also design a verification platform for ROUTE (Real Time Object Delivery Over Unidirectional Transport)/DASH based heterogeneous network environment and use the results to validate the proposed technology.

3D Printing-Based Ultrafast Mixing and Injecting Systems for Time-Resolved Serial Femtosecond Crystallography (시간 분해 직렬 펨토초 결정학을 위한 3차원 프린팅 기반의 초고속 믹싱 및 인젝팅 시스템)

  • Ji, Inseo;Kang, Jeon-Woong;Kim, Taeyung;Kang, Min Seo;Kwon, Sun Beom;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.300-307
    • /
    • 2022
  • Time-resolved serial femtosecond crystallography (TR-SFX) is a powerful technique for determining temporal variations in the structural properties of biomacromolecules on ultra-short time scales without causing structure damage by employing femtosecond X-ray laser pulses generated by an X-ray free electron laser (XFEL). The mixing rate of reactants and biomolecule samples, as well as the hit rate between crystal samples and x-ray pulses, are critical factors determining TR-SFX performance, such as accurate image acquisition and efficient sample consumption. We here develop two distinct sample delivery systems that enable ultra-fast mixing and on-demand droplet injecting via pneumatic application with a square pulse signal. The first strategy relies on inertial mixing, which is caused by the high-speed collision and subsequent coalescence of droplets ejected through a double nozzle, while the second relies on on-demand pneumatic jetting embedded with a 3D-printed micromixer. First, the colliding behaviors of the droplets ejected through the double nozzle, as well as the inertial mixing within the coalesced droplets, are investigated experimentally and numerically. The mixing performance of the pneumatic jetting system with an integrated micromixer is then evaluated by using similar approaches. The sample delivery system devised in this work is very valuable for three-dimensional biomolecular structure analysis, which is critical for elucidating the mechanisms by which certain proteins cause disease, as well as searching for antibody drugs and new drug candidates.

The Investigation Image-guided Radiation Therapy of Bladder Cancer Patients (방광암 환자의 영상유도 방사선치료에 관한 고찰)

  • Bae, Seong-Soo;Bae, Sun-Myoung;Kim, Jin-San;Kang, Tae-Young;Back, Geum-Mun;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.39-43
    • /
    • 2012
  • Purpose: In hospital image-guided radiation therapy in patients with bladder cancer to enhance the reproducibility of the appropriate amount, depending on the patient's condition, and image-guided injection of saline system (On-Board Imager system, OBI, VARIAN, USA) three of the Cone-Beam CT dimensional matching (3D-3D matching) to be the treatment. In this study, the treatment of patients with bladder cancer at Cone-Beam CT image obtained through the analysis of the bones based matching and matching based on the bladder to learn about the differences, the bladder's volume change injected saline solution by looking at the bladder for the treatment of patients with a more appropriate image matching is to assess how the discussion. Materials and Methods: At our hospital from January 2009 to April 2010 admitted for radiation therapy patients, 7 patients with bladder cancer using a Folly catheter of residual urine in the bladder after removing the amount determined according to individual patient enough to inject saline CT-Sim was designed after the treatment plan. After that, using OBI before treatment to confirm position with Cone-Beam CT scan was physician in charge of matching was performed in all patients. CBCT images using a total of 45 bones, bladder, based on image matching and image matching based on the difference were analyzed. In addition, changes in bladder volume of Eclipse (version 8.0, VARIAN, USA) persuaded through. Results: Bones, one based image matching based on the bladder and re-matching the X axis is the difference between the average $3{\pm}2mm$, Y axis, $1.8{\pm}1.3mm$, Z-axis travel distance is $2.3{\pm}1.7mm$ and the overall $4.8{\pm}2.0mm$, respectively. The volume of the bladder compared to the baseline showed a difference of $4.03{\pm}3.97%$. Conclusion: Anatomical location and nature of the bladder due to internal movement of the bones, even after matching with the image of the bladder occurred in different locations. In addition, the volume of saline-filled bladder showed up the difference between the 4.03 percent, but matched in both images to be included in the planned volumes were able to confirm. Thus, after injection of saline into the bladder base by providing a more accurate image matching will be able to conduct therapy.

  • PDF

Analysis of Hydrodynamic Similarity of Pressurized Three-Phase Slurry Bubble Column for its Design and Scale-up (가압 삼상슬러리 기포탑의 설계 및 Scale-up을 위한 수력학적 Similarity 해석)

  • Seo, Myung Jae;Lim, Dae Ho;Jin, Hae Ryong;Kang, Yong;Jung, Heon;Lee, Ho Tae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.720-726
    • /
    • 2009
  • Hydrodynamic similarity was investigated in pressurized three-phase slurry bubble columns by selecting the bubble holdup and pressure drop as objective functions, for the effective design and scale-up of it. In addition, effects of operating variables on the bubble holdup with variation of column diameter were also analyzed. Gas velocity($U_G$), viscosity(${\mu}_{SL,eff}$) and surface tension(${\rho}_{SL}$) of slurry phase, density difference between the slurry and gas phases(${\rho}_{SL}-{\rho}_G$) depending on the operating pressure, pressure drop per unit length(${\Delta}P/L$), column diameter(D) and gravitational acceleration(g) were chosen as governing parameters in determining the bubble holdup and pressure drop in the column. From the dimensional analysis, four kinds of dimensionless groups were derived from the 7 parameters and 4 fundamental dimensions. Effects of dimensionless groups such as Reynolds, Froude and Weber numbers on the bubble holdup in the column were discussed. The pressure drop and bubble holdup could be predicted from the correlation of dimensionless groups effectively, which could be used as useful information for the design and scale-up of pressurized slurry bubble columns.

Seismic response characteristics of the hypothetical subsea tunnel in the fault zone with various material properties (다양한 물성의 단층대를 통과하는 가상해저터널의 지진 시 응답 특성)

  • Jang, Dong In;Kwak, Chang-Won;Park, Inn-Joon;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1061-1071
    • /
    • 2018
  • A subsea tunnel, being a super-sized underground structure must ensure safety at the time of earthquake, as well as at ordinary times. At the time of earthquake, in particular, of a subsea tunnel, a variety of response behaviors are induced owing to relative rigidity to the surrounding ground, or difference of displacement, so that the behavior characteristics can be hardly anticipated. The investigation aims to understand the behavior characteristics switched by earthquake of an imaginary subsea tunnel which passes through a fault zone having different physical properties from those of the surrounding ground. In order to achieve the aim, dynamic response behaviors of a subsea tunnel which passes through a fault zone were observed by means of indoor experiments. For the sake of improved earthquake resistance, a shape of subsea tunnel to which flexible segments have been applied was considered. Afterward, it is believed that a D/B can be established through 3-dimensional earthquake resistance interpretation of various grounds, on the basis of verified results from the experiments and interpretations under various conditions. The present investigation performed 1 g shaking table test in order to verify the result of 3-dimensional earthquake resistance interpretation. A model considering the similitude (1:100) of a scale-down model test was manufactured, and tests for three (3) Cases were carried out. Incident seismic wave was introduced by artificial seismic wave having both long-period and short-period earthquake properties in the horizontal direction which is rectangular to the processing direction of the tunnel, so that a fault zone was modeled. For numerical analysis, elastic modulus of the fault zone was assumed 1/5 value of the modulus of individual grounds surround the tunnel, in order to simulate a fault zone. Resultantly, reduced acceleration was confirmed with increase of physical properties of the fault zone, and the result from the shaking table test showed the same tendency as the result from 3-dimensional interpretation.

Application Status and Prospects of CNC-Based Technologies in Gas Turbine Industry (가스터빈 산업에서의 CNC 기반기술 응용현황 및 전망)

  • Kang, Sin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.331-336
    • /
    • 2011
  • The three-dimensional complex curvature of the airfoil complicates the manufacture and repair of gas-turbine components. As a result of the developments in computer technology since the early 1990s, CNC-based technologies for machine tools and related programs have been increasingly applied in the gas turbine industry. In particular, fiveaxis simultaneous machines with adaptive functions have proven its excellent flexibility and productivity due to the capability in determining the 3D data from the unknown curvature. A well-organized robot system with eight-axis simultaneous control can lead to powerful standardization and high productivity. We summarize and review CNC technologies and their applications in the gas turbine industry, with a discussion of the manufacture and repair of gas turbine parts.

Body Size Changes Characteristics of Elementary School Girls Using 3D Body Scan Data (3차원 인체형상을 이용한 학령기 여아의 신체 치수 변화 특성)

  • Jang, Ja-Moon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.13 no.4
    • /
    • pp.79-91
    • /
    • 2011
  • This study divided school age by considering a change in the stage of body growth by age in elementary schoolgirls with the use of body scan data, and considered by comparing body size characteristics by school age. Elementary schoolgirls' body shape cannot be divided clearly. However, ages 7-10 were bound into the same group for the majority of girth, width, and thickness items. 7-8 years old, 9-10 years old, and 11-12 years old were bound into the same group in most items except ages 9 and 10 for the height item. Thus, significant difference was indicated between groups. Accordingly, this study divided the school age into three periods such as early stage(ages 7-8), middle stage(ages 9-10), and late stage(ages 11-12) in consideration of the stages for elementary schoolgirls' body-shape growth. As a result of analyzing body size according to division of school age, the higher school age leads to continuous growth. The notable growth was indicated especially in the middle stage and late stage. Examining centering on typical items related to the clothing construction, there was notable increase in waist thickness and hip thickness between early and middle stages and in height, weight, breast girth, waist circumference, back length, breast width, and waist width between middle and late stages. On the other hand, hip circumference, hip width, breast thickness, and length between shoulder edges were indicated to grow relatively and evenly among early, middle, and late stages. The lateral form was shown a clear difference in the forms of early, middle, and late stages in height and length of the whole body shape and in side thickness. The early and middle stages belong to body shape that abdomen is projected to be curved. The late stage showed right body shape which is straight and stable form in posture.

  • PDF

The deformation behavior of soil tunnels reinforced with RPUM and fiberglass pipes (RPUM과 유리섬유 파이프로 막장을 보강한 토사터널의 변형거동)

  • Nam, Gi-Chun;Heo, Young;Kim, Chi-Whan;You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.185-193
    • /
    • 2002
  • In this paper, deformation behavior of shallow subway tunnel excavated in weathered soil and reinforcement effects of longitudinal support measures are investigated via three dimensional FDM analysis. Two excavation methods, half-face excavation and full-face excavation, are considered in simulation to study the influences of excavation methods on tunnel deformation behavior. In addition, the reinforcing effects of RPUM and fiberglass pipe are compared. Face extrusion, covergence, preconvergence, and sidewall displacement are investigated to analyze tunnel deformation behavior, and surface settlement is used to analyze the effects of excavation methods and longitudinal supports measures. The simulation results show that half-face excavation induces larger convergence, preconvergence, sidewall displacement, surface settlement than full-face excavation, while full-face excavation induces larger extrusion than half-face excavation. In addition, under same excavation method, all displacements are larger when RPUM is only used for longitudinal support than when RPUM is jointly used with fiberglass pipes.

  • PDF

The Kinematic Analysis of Back-Kick Motion in Taekwondo (태권도 숙련자와 미숙련자의 공격뒤차기 동작에 대한 운동학적 분석)

  • Lee, Dong-Jin;Park, Chan-Ho;Kim, Hun-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.43-51
    • /
    • 2006
  • The purpose of this study was to analyze kinematic variables during turing back kick motion of Taekwondo. The subjects of this study were the 4 skilled and 4 unskilled of male university player in respectively. The experiment of this study was used two 16mm high speed cameras and its speed 125 frames/s. Analysis of this data was three dimensional cinematography using KWON3D program package. The results were as following; 1. In the elapsed time, there was no significance difference statically between a skilled and unskilled group. But skilled group was more fast during the motion of I phase. And unskilled group was more fast during the motion of II phase so called force production section, which had an influence on Diechagi's velocity. 2. In the center of gravity of human body, the changing of it was $1.10{\pm}0.04m$, $1.12{\pm}0.03m$ of LFM(left foot movement) and $1.36{\pm}0.08m$, $1.39{\pm}0.09m$ of RKF(right knee flection), and $1.44{\pm}0.08m$, $1.42{\pm}0.09m$ of RFI(right foot impact). There was no significance difference statically between the two groups. 3. The velocity of heel on impact was 1.13m/s in the skilled group and 1.23m/s in the unskilled group, when each angle of knee was $110.4{\pm}10.9deg/s$, $114.8{\pm}28.4deg/s$. The maximum velocity of each performance was reached before the RKF, and the velocity and angle at impact along by two groups did not show any significant difference statically. 4. In the angular velocity of just RKF of lower leg, there was significance difference statically between the two groups(p<.05).

Three-dimensional analysis of dental decompensation for skeletal Class III malocclusion on the basis of vertical skeletal patterns obtained using cone-beam computed tomography

  • Kim, Yong-Il;Choi, Youn-Kyung;Park, Soo-Byung;Son, Woo-Sung;Kim, Seong-Sik
    • The korean journal of orthodontics
    • /
    • v.42 no.5
    • /
    • pp.227-234
    • /
    • 2012
  • Objective: To evaluate the presurgical orthodontic tooth movement of mandibular teeth after dental decompensation for skeletal Class III deformities on the basis of vertical skeletal patterns. Methods: This cohort was comprised of 62 patients who received presurgical orthodontic treatment. These patients were divided into 3 groups according to their vertical skeletal patterns. Changes in the positions of the mandibular central incisor, canine, premolar, and 1st molar after presurgical orthodontic treatment were measured using a cone-beam computed tomography (CBCT) superimposition method. Results: The incisors moved forward after dental decompensation in all 3 groups. The canines in group I and the 1st premolars in groups I and III also moved forward. The incisors and canines were extruded in groups I and II. The 1st and 2nd premolars were also extruded in all groups. Vertical changes in the 1st premolars differed significantly between the groups. We also observed lateral movement of the canines in group III and of the 1st premolar, 2nd premolar, and 1st molar in all 3 groups (p < 0.05). Conclusions: Movement of the mandibular incisors and premolars resolved the dental compensation. The skeletal facial pattern did not affect the dental decompensation, except in the case of vertical changes of the 1st premolars.