• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.037 seconds

Comparison of mastoid air cell volume in patients with or without a pneumatized articular tubercle

  • Adisen, Mehmet Zahit;Aydogdu, Merve
    • Imaging Science in Dentistry
    • /
    • v.52 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • Purpose: The aim of this study was to compare mastoid air cell volumes in patients with or without a pneumatized articular tubercle (PAT) on cone-beam computed tomography (CBCT) images. Materials and Methods: The CBCT images of 224 patients were retrospectively analyzed for the presence of PAT. The Digital Imaging and Communications in Medicine data of 30 patients with PAT and 30 individuals without PAT were transferred to 3D Doctor Software. Mastoid air cell volumes were measured using semi-automatic segmentation on axial sections. Data were analyzed using SPSS version 20.0. Results: The patients with PAT and those without PAT had a mean mastoid volume of 6.31±2.86 cm3 and 3.25±1.99 cm3, respectively. There were statistically significant differences in mastoid air cell volumes between patients with and without PAT regardless of sex and mastoid air cell side (P<0.05). Conclusion: The detection of PAT on routine dental radiographic examinations might be a potential prognostic factor that could be used to detect extensive pneumatization in the temporal bone. Clinicians should be aware that there may be widespread pneumatization of mastoid air cells in patients in whom PAT is detected. Advanced imaging should be performed in these cases, and possible complications due to surgical interventions should be considered.

Developing Degenerative Arthritis Patient Classification Algorithm based on 3D Walking Video (3차원 보행 영상 기반 퇴행성 관절염 환자 분류 알고리즘 개발)

  • Tea-Ho Kang;Si-Yul Sung;Sang-Hyeok Han;Dong-Hyun Park;Sungwoo Kang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.161-169
    • /
    • 2023
  • Degenerative arthritis is a common joint disease that affects many elderly people and is typically diagnosed through radiography. However, the need for remote diagnosis is increasing because knee pain and walking disorders caused by degenerative arthritis make face-to-face treatment difficult. This study collects three-dimensional joint coordinates in real time using Azure Kinect DK and calculates 6 gait features through visualization and one-way ANOVA verification. The random forest classifier, trained with these characteristics, classified degenerative arthritis with an accuracy of 97.52%, and the model's basis for classification was identified through classification algorithm by features. Overall, this study not only compensated for the shortcomings of existing diagnostic methods, but also constructed a high-accuracy prediction model using statistically verified gait features and provided detailed prediction results.

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

The influence of occlusal loads on stress distribution of cervical composite resin restorations: A three-dimensional finite element study (교합력이 치경부 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Chan-Seok;Hur, Bock;Kim, Hyeon-Cheol;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.246-257
    • /
    • 2008
  • The purpose of this study was to investigate the influence of various occlusal loading sites and directions on the stress distribution of the cervical composite resin restorations of maxillary second premolar, using 3 dimensional (3D) finite element (FE) analysis. Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). HyperMesh (Altair Engineering. Inc., Troy, USA) and ANSYS (Swanson Analysis Systems. Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid (Z100, 3M Dental Products, St. Paul, MN, USA) or flowable resin (Tetric Flow, Viva dent Ets., FL-9494-Schaan, Liechtenstein) and each restoration was simulated with adhesive layer thickness ($40{\mu}m$). A static load of 200 N was applied on the three points of the buccal incline of the palatal cusp and oriented in $20^{\circ}$ increments, from vertical (long axis of the tooth) to oblique $40^{\circ}$ direction towards the buccal. The maximum principal stresses in the occlusal and cervical cavosurface margin and vertical section of buccal surfaces of notch-shaped class V cavity were analyzed using ANSYS. As the angle of loading direction increased, tensile stress increased. Loading site had little effect on it. Under same loading condition. Tetric Flow showed relatively lower stress than Z100 overall, except both point angles. Loading direction and the elastic modulus of restorative material seem to be important factor on the cervical restoration.

  • PDF

Estimation of fresh weight for chinese cabbage using the Kinect sensor (키넥트를 이용한 배추 생체중 추정)

  • Lee, Sukin;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.205-213
    • /
    • 2018
  • Development and validation of crop models often require measurements of biomass for the crop of interest. Considerable efforts would be needed to obtain a reasonable amount of biomass data because the destructive sampling of a given crop is usually used. The Kinect sensor, which has a combination of image and depth sensors, can be used for estimating crop biomass without using destructive sampling approach. This approach could provide more data sets for model development and validation. The objective of this study was to examine the applicability of the Kinect sensor for estimation of chinese cabbage fresh weight. The fresh weight of five chinese cabbage was measured and compared with estimates using the Kinect sensor. The estimates were obtained by scanning individual chinese cabbage to create point cloud, removing noise, and building a three dimensional model with a set of free software. It was found that the 3D model created using the Kinect sensor explained about 98.7% of variation in fresh weight of chinese cabbage. Furthermore, the correlation coefficient between estimates and measurements were highly significant, which suggested that the Kinect sensor would be applicable to estimation of fresh weight for chinese cabbage. Our results demonstrated that a depth sensor allows for a non-destructive sampling approach, which enables to collect observation data for crop fresh weight over time. This would help development and validation of a crop model using a large number of reliable data sets, which merits further studies on application of various depth sensors to crop dry weight measurements.

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems

  • Kleitz, Freddy;Kim, Tae-Wan;Ryoo, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1653-1668
    • /
    • 2005
  • Assembly of hybrid mesophases through the combination of amphiphilic block copolymers, acting as structuredirecting agents, and silicon sources using low acid catalyst concentration regimes is a versatile strategy to produce large quantities of high-quality ordered large-pore mesoporous silicas in a very reproducible manner. Controlling structural and textural properties is proven to be straightforward at low HCl concentrations with the adjustment of synthesis gel composition and the option of adding co-structure-directing molecules. In this account, we illustrate how various types of large-pore mesoporous silica can easily be prepared in high phase purity with tailored pore dimensions and tailored level of framework interconnectivity. Silica mesophases with two-dimensional hexagonal (p6mm) and three-dimensional cubi (Fm$\overline{3}$m, Im$\overline{3}$m and Ia$\overline{3}$d) symmetries are generated in aqueous solution by employing HCl concentrations in the range of 0.1−0.5 M and polyalkylene oxide-based triblock copolymers such as Pluronic P123 $(EO_{20}-PO_{70}-EO_{20})$ and Pluronic F127 $(EO_{106}-PO_{70}-EO_{106})$. Characterizations by powder X-ray diffraction, nitrogen physisorption, and transmission electron microscopy show that the mesoporous materials all possess high specific surface areas, high pore volumes and readily tunable pore diameters in narrow distribution of sizes ranging from 4 to 12 nm. Furthermore, we discuss our recent advances achieved in order to extend widely the phase domains in which single mesostructures are formed. Emphasis is put on the first synthetic product phase diagrams obtained in $SiO_2$-triblock copolymer-BuOH-$H_2O$ systems, with tuning amounts of butanol and silica source correspondingly. It is expected that the extended phase domains will allow designed synthesis of mesoporous silicas with targeted characteristics, offering vast prospects for future applications.

SEAMCAT Based Interference Evaluation Tool with 3D Terrain Display (3차원 지형 디스플레이 기능을 갖는 SEAMCAT 기반 전파 간섭 평가 도구)

  • Park, Sang Joon;Jeon, Jun Young;Lim, Chang Heon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.13-20
    • /
    • 2013
  • Currently, SEAMCAT has been widely used as a tool to evaluate the effects of interference among wireless communication systems. In the previous work, we have incorporated the ITU-R P.526 pathloss model to the existing SEAMCAT in order to support the capability of interference evaluation taking into account any specific terrain characteristics. Along with this, we have implemented a terrain display function based on the Google map. However, the two-dimensional Google map based display is not effective in helping users to figure out some terrain features including the elevation variation in a given region. In order to alleviate this difficulty, we have incorporated the three-dimensional terrain display using the API of the Google earth to the existing SEAMCAT and provided the capability of viewing the positions of the associated communication systems, the variation of the carrier intensity and interference intensity in location, shadow region indication, and line-of-sight analysis and presented an example of interference evaluation.

Resonant Mode Analysis of Microwave Film Bulk Acoustic Wave Resonator using 3D Finite Element Method (3차원 유한 요소법을 이용한 초고주파 압전 박막 공진기의 공진 모드해석)

  • 정재호;송영민;이용현;이정희;고광식;최현철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.18-26
    • /
    • 2001
  • In this paper, the resonant characteristics and modes of the film bulk acoustic wave resonator (FBAR) used in 1~2 GHz frequency region are analyzed by it's input impedance which was calculated by three dimensional finite element method formulated as eigenvalue problem using electro-mechanical wave equation and boundary condition. It was extracted that the resonant and the spurious characteristics considering the effects of electrode area and shape variation and unsymmetry of upper and lower electrode. Those effects couldn't be analyzed by on dimensional analysis, e.g. Mason equivalent model. The simulation result was confirmed by comparing with the simulation data from Mason model analysis and the measured data of the ZnO FBAR fabricated using micro-machining technique. Also, through the simulation of the area variations of FBAR, it was obtained that the optimum ratio of length and thickness is 20:1 and the minimum ratio is 5:1 to operate thickness vibration mode.

  • PDF

Design of Mobile Application for Learning Chemistry using Augmented Reality

  • Kim, Jin-Woong;Hur, Jee-Sic;Ha, Min Woo;Kim, Soo Kyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.139-147
    • /
    • 2022
  • The goal of this study is to develop a mobile application so that a person who is new to chemistry can easily acquire the knowledge necessary for chemical structure learning using image tracking technology. The point of this study is to provide a new chemical structure learning experience by recognizing a two-dimensional picture, augmenting the chemical structure into a three-dimensional object, showing it on the user's screen, and using a service that simultaneously provides related information in multiple fields. characteristic. Login API and real-time database technology were used for safe and real-time data management, and an application was developed using image tracking technology for image recognition and 3D object augmentation service. In the future, we plan to use the chemical structure data library to efficiently load and output data.