• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.03 seconds

Domain Decomposition Strategy for Pin-wise Full-Core Monte Carlo Depletion Calculation with the Reactor Monte Carlo Code

  • Liang, Jingang;Wang, Kan;Qiu, Yishu;Chai, Xiaoming;Qiang, Shenglong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.635-641
    • /
    • 2016
  • Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.

3D Digital Design Optimization Process Considering Constructability of Freeform Structure (비정형 구조물의 시공성을 고려한 3차원 디지털 설계 최적화 프로세스)

  • Ryu, Han-Guk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.35-43
    • /
    • 2013
  • Nowadays the widely used media in architecture include visualizations, animations and three-dimensional models. 3D digital methods using active CAM(Computer Aided Manufacturing) and CNC(Computerized Numerical Control) imaging have been developed for accurate shape and 3D measurements in freeform buildings. In contrast to a conventional building using auto CAD system and others, the proposed digital optimization method is based on a combination of 3D numerical data and parametric 3D model for design and construction. The objective of this paper is therefore to present digital optimization process for constructability of freeform building. The method can be useful in the effective implementation of an error-proofing process of freeform building during design and construction phase. 3D digital coordinate data can be used effectively to identify correct size of structural and finish members and installation location of each members in construction field. In addition, architects, engineers and contractors can evaluate design, materials, constructability and identify error-proofing opportunities. Other project participants can also include representatives from all levels of management, departments as well as workers and key subcontractors' personnel, if necessary. The 3D digital optimization process is therefore appropriate to serious variations in freeform shape. For future study, the developed digital optimization method is necessary to be carried out to verify the robustness and accuracy for constructability in construction field.

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network (합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델)

  • Kim, Hyung-Jin;Kim, Kwang-Sik;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

Advances in Radiation Oncology in New Millennium in Korea (21세기 방사선종양학의 전망:최근의 진보와 한국에서의 발전)

  • Huh, Seung-Jae;Park, Chan-Il
    • Radiation Oncology Journal
    • /
    • v.18 no.3
    • /
    • pp.167-176
    • /
    • 2000
  • The objective of recent radiation therapy is to improve the quality of treatment and the after treatment quality of life. In Korea, sharing the same objective, significant advancement was made due to the gradual increase of patient number and rapid increase of treatment facilities. The advancement includes generalization of three-dimensional conformal radiotherapy (3D-CRT), application of linac-based stereotactic radiosurgery (SRS), and furthermore, the introduction of intensity modulated radiation therapy (IMRT). Authors in this paper prospectively review the followings: the advancement of radiation oncology in Korea, the recent status of four-dimensional radiation therapy, IMRT, the concept of the treatment with biological conformity, the trend of combined chemoradiotherapy, the importance of internet and radiation oncology information management system as influenced by the revolution of information technology, and finally the global trend of telemedicine in radiation oncology. Additionally, we suggest the methods to improve radiotherapy treatment, which include improvement of quality assurance (QA) measures by developing Koreanized QA protocol and system, regional study about clinical protocol development for phase three clinical trial, suggestion of unified treatment protocol and guideline by academic or research societies, domestic generation of treatment equipment's or system, establishment of nationwide data base of radiation-oncology-related information, and finally patterns-of-care study about major cancers.

  • PDF

A study on the 3-D standard value of mandible for the diagnosis of facial asymmetry (안면비대칭 진단을 위한 하악골 3차원영상 계측기준치에 관한 연구)

  • Ahn, Jeong-Soon;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.35 no.2 s.109
    • /
    • pp.91-105
    • /
    • 2005
  • For af accurate diagnosis and treatment planning of facial asymmetry, the use of 3-dimensional (3-D) image is indispensable. The purpose of this study was to get standard data for the 3-D analysis of facial asymmetry Computerized tomography (CT) was taken in the 60 normal occlusion individuals (30 male. 30 female) who did not have any apparent facial asymmetry. The acquired 2D CT DICOM data were input on a computer, and the reformatted 3-D images were created using a 3-D image software. Twenty three measurements were established in order to evaluate asymmetry; 15 ;omear measurements (6 for ramus length. 1 for condylar neck length, and 8 for mandibular body length) and 8 angular measurements (4 for gonial angle. 2 for frontal ramal inclination. and 2 for lateral ramal inclination) The right aid left difference of each measurement was calculated and analyzed. It is suggested that the right and left differences of the measurements obtained from the study could be used as references for the diagnosis of facial asymmetric patients.

Quantitative and qualitative evaluation on the accuracy of three intraoral scanners for human identification in forensic odontology

  • Eun-Jeong Bae;Eun-Jin Woo
    • Anatomy and Cell Biology
    • /
    • v.55 no.1
    • /
    • pp.72-78
    • /
    • 2022
  • The purpose of this study was to analyze the accuracy of intra oral scanner (IOS) to confirm the applicability of IOS for the recording and analysis of tooth morphology in forensics. The less damaged mandible specimen with many teeth remaining was scanned three times using three types of intraoral scanners (CS3600, i500, and Trios3). For quantitative comparisons of the scanned images produced by these intraoral scanners, root mean square (RMS) values were computed using a three-dimensional analysis program and a one-way ANOVA was conducted with Tukey HSD (honestly significant difference) as a post-hoc analysis (α=0.05). The repeatability of the full scan data was highest with the i500 (0.14±0.03 mm), and the post-hoc analysis confirmed significant differences between the CS3600 and the i500 outcomes (P-value=0.003). The repeatability of the partial scan data for the teeth in the mandible was highest with the i500 (0.08±0.02 mm), and the post-hoc analysis confirmed significant differences between the CS3600 and the i500 (P-value=0.016). The precision of the full scan data was highest with the i500 (0.16±0.01 mm) but the differences were not statistically significant (P-value=0.091). Meanwhile, the precision of the partial scan data for the teeth in the mandible was highest with the Trios3 (0.22±0.02 mm), but the differences were not statistically significant (P-value=0.762). Considering that the scanning of other areas of the oral cavity in addition to the teeth is important in forensic odontology, the i500 scanner appears to be the most appropriate intraoral scanner for human identification. However, as the scope of oral scanning is generally limited to teeth in the practice of dentistry, additional discussions of how to apply the IOS in forensic odontology are needed. Ultimately, the results here can contribute to the overall discussion of the forensic applicability dental data produced by intraoral scanners.

Fireworks Modeling Technique based on Particle Tracking (입자추적기반의 불꽃 모델링 기법)

  • Cho, ChangWoo;Kim, KiHyun;Jeong, ChangSung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.102-109
    • /
    • 2014
  • A particle system is used for modeling the physical phenomenon. There are many traditional ways for simulation modeling which can be well suited for application including the landscapes of branches, clouds, waves, fog, rain, snow and fireworks in the three-dimensional space. In this paper, we present a new fireworks modeling technique for modeling 3D firework based on Firework Particle Tracking (FPT) using the particle system. Our method can track and recognize the launched and exploded particle of fireworks, and extracts relatively accurate 3D positions of the particles using 3D depth values. It can realize 3D simulation by using tracking information such as position, speed, color and life time of the firework particle. We exploit Region of Interest (ROI) for fast particle extraction and the prevention of false particle extraction caused by noise. Moreover, Kalman filter is used to enhance the robustness in launch step. We propose a new fireworks particle tracking method for the efficient tracking of particles by considering maximum moving range and moving direction of particles, and shall show that the 3D speeds of particles can be obtained by finding the rotation angles of fireworks. Also, we carry out the performance evaluation of particle tracking: tracking speed and accuracy for tracking, classification, rotation angle respectively with respect to four types of fireworks: sphere, circle, chrysanthemum and heart.

Fabrication of removable partial denture on scleroderma patient using 3-dimensional intraoral scanner (전신성 피부경화증 환자에서의 3차원 구강스캐너를 이용한 가철성 국소의치 제작 증례)

  • Kim, Ung-Gyu;Han, Jung-Suk;Yoon, Hyung-In;Yeo, In-Sung Luke
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.116-125
    • /
    • 2021
  • A three-dimensional (3D) intraoral scanner, which is one of the major developments in digital dentistry, is widely used in fixed prosthodontics. The application of intraoral scanner is now increasing in removable prosthodontics. Sclerotic change induced by scleroderma causes the limitation of mouth opening and multiple loss of the teeth. Conventional prosthodontic procedures are challenging for patients with this disease. This study showed a case of digital approach to the removable prosthodontic treatment of a patient who had the scleroderma and the consequent microstomia. At the provisional stage, the optical impression of patient's oral structures was digitally obtained. Using a 3D printer, the provisional dentures were fabricated. After extraction of hopeless tooth, the definitive digital impression was taken and the metal frameworks were fabricated, based on the data acquired from the impression. The definitive removable partial dentures were completed and delivered to the patient, who was satisfied with the prostheses.

SAR(Synthetic Aperture Radar) 3-Dimensional Scatterers Point Cloud Target Model and Experiments on Bridge Area (영상레이더(SAR)용 3차원 산란점 점구름 표적모델의 교량 지역에 대한 적용)

  • Jong Hoo Park;Sang Chul Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.1-8
    • /
    • 2023
  • Modeling of artificial targets in Synthetic Aperture radar (SAR) mainly simulates radar signals reflected from the faces and edges of the 3D Computer Aided Design (CAD) model with a ray-tracing method, and modeling of the clutter on the Earth's surface uses a method of distinguishing types with similar distribution characteristics through statistical analysis of the SAR image itself. In this paper, man-made targets on the surface and background clutter on the terrain are integrated and made into a three-dimensional (3D) point cloud scatterer model, and SAR image were created through computational signal processing. The results of the SAR Stripmap image generation of the actual automobile based SAR radar system and the results analyzed using EM modeling or statistical distribution models are compared with this 3D point cloud scatterer model. The modeling target is selected as an bridge because it has the characteristic of having both water surface and ground terrain around the bridge and is also a target of great interest in both military and civilian use.

A Study on Stable Service of Marker based Augmented Reality Using 3D Location Measurement of Beacons (3차원 비콘 위치측정을 이용한 마커기반 증강현실의 안정적 서비스에 관한 연구)

  • Jung, Ji-Jung;Lee, Gwang;Kim, Bong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.883-890
    • /
    • 2017
  • Among the augmented reality services, the most frequently used services are marker based augmented reality services. However, there is a problem that the augmented reality service can not be provided in an environment in which the marker image can not be recognized. In this paper, we propose a method to provide more stable service by estimating the user's posture even if the marker image can not be correctly recognized due to occlusion, obstacle or marker damage in the marker based augmented reality. In the proposed method, when a failure occurs in the provision of a marker based augmented reality, the attitude of the user is estimated using the 3-dimensional coordinates measured through communication between the three beacons and the user, and it allows the user to receive the augmented reality service continuously. We describe the scenario of augmented reality technique using proposed marker recognition and beacon communication, and present the results of experiments based on the degree of occlusion and damage.