• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.041 seconds

Subthreshold Current Model of FinFET Using Three Dimensional Poisson's Equation

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 2009
  • This paper has presented the subthreshold current model of FinFET using the potential variation in the doped channel based on the analytical solution of three dimensional Poisson's equation. The model has been verified by the comparison with the data from 3D numerical device simulator. The variation of subthreshold current with front and back gate bias has been studied. The variation of subthreshold swing and threshold voltage with front and back gate bias has been investigated.

3-D information of Object by Modified Goldstein Algorithm at Digital holography

  • Yoon, Seon-Kyu;Kim, Sung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1486-1489
    • /
    • 2007
  • Generally many kind of phase unwrapping method are used to obtain three-dimensional feature in digital holography. Goldstein algorithm is representative method. But Goldstein algorithm has some problems. We developed a modified Goldstein algorithm that could solve the problem of Goldstein algorithm using the boundary information. Obtained three-dimensional information can be applied to 3-D contents of stereoscopic, multi-view, SMV, or holographic display.

  • PDF

Integral imaging system with enhanced depth of field using birefringence lens array

  • Park, Chan-Kyu;Lee, Sang-Shin;Hwang, Yong-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1135-1137
    • /
    • 2008
  • In this paper, it is proposed that the integral imaging technique is applied to reconstruct 3D (three dimensional) objects with enhanced depth of field, computationally and optically. Lens array using birefringence material is adopted to obtain the reconstruction. The elemental images sets are picked up through common micro lens array and utilized to present 3D reconstruction images using adopted lens array.

  • PDF

Optical Scanning Holographic Approach to Three-Dimensional Television

  • Poon, Ting-Chung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.281-284
    • /
    • 2002
  • We first review a real-time holographic recording technique called optical scanning holography (OSH) and discuss holographic reconstruction using spatial light modulators (SLMs). We then present how the overall system can be used for three-dimensional (3-D) holographic television (TV) system and address some of the issues encountered. Finally, we suggest some techniques to alleviate the issues encountered in such a 3-D holographic TV.

  • PDF

Three-dimensional Active Shape Model for Object Segmentation (관심 객체 분할을 위한 삼차원 능동모양모델 기법)

  • Lim, Seong-Jae;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.335-336
    • /
    • 2006
  • In this paper, we propose an active shape image segmentation method for three-dimensional(3-D) medical images using a generation method of the 3-D shape model. The proposed method generates the shape model using a distance transform and a tetrahedron method for landmarking. After generating the 3-D model, we extend the training and segmentation processes of 2-D active shape model(ASM) and improve the searching process. The proposed method provides comparative results to 2-D ASM, region-based or contour-based methods. Experimental results demonstrate that this algorithm is effective for a semi-automatic segmentation method of 3-D medical images.

  • PDF

A Spatial-Temporal Three-Dimensional Human Pose Reconstruction Framework

  • Nguyen, Xuan Thanh;Ngo, Thi Duyen;Le, Thanh Ha
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.399-409
    • /
    • 2019
  • Three-dimensional (3D) human pose reconstruction from single-view image is a difficult and challenging topic. Existing approaches mostly process frame-by-frame independently while inter-frames are highly correlated in a sequence. In contrast, we introduce a novel spatial-temporal 3D human pose reconstruction framework that leverages both intra and inter-frame relationships in consecutive 2D pose sequences. Orthogonal matching pursuit (OMP) algorithm, pre-trained pose-angle limits and temporal models have been implemented. Several quantitative comparisons between our proposed framework and recent works have been studied on CMU motion capture dataset and Vietnamese traditional dance sequences. Our framework outperforms others by 10% lower of Euclidean reconstruction error and more robust against Gaussian noise. Additionally, it is also important to mention that our reconstructed 3D pose sequences are more natural and smoother than others.

The Discontinuities Extraction and Analysis of Rock Slope by 3D Image (3차원영상에 의한 암반사면의 불연속면 추출 및 분석)

  • 강준묵;김위현;박준규
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.163-167
    • /
    • 2003
  • As digital photogrammetry can acquire much three-dimensional data quickly and exactly in equal accuracy, and it has advantage that can use this in modelling, it's practical use possibility is increased in various field by collection method of data for GIS. In this study, it was intended to create 3D image that has coordinate system, and use in acquisition of position information for object. And, it was applied to discontinuities extraction and measurement of rock slope for practical use of three-dimensional image and examination of measurement accuracy. Through this, it is inspected the possibility of three-dimensional image creation and the acquisition of space information.

  • PDF

Three-Dimensional Simulation of a Rotor Pole Forging Process and Verification of the Results (로터 폴 단조 공정의 정밀 삼차원 시뮬레이션 및 결과의 검증)

  • 고병호;이민철;제진수;전만수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.158-162
    • /
    • 2002
  • In this paper, the usefulness of a three-dimensional forging simulation technique is verified through its application to process design in rotor pole forging. A simulator, AFDEX3D developed based on the rigid-plastic finite element method and hexahedral elements, is employed. The simulated results of an application example found in a precision forging company are compared with the actually forged ones in detail. It has been verified that the simulation results are in good agreement with the actual phenomena.

Classification of Elderly Women's Foot Type (노년 여성의 발 유형분류)

  • Kim, Nam-Soon;Do, Wol-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.305-320
    • /
    • 2014
  • This study identifies the foot shapes of elderly women by classifying foot type according to the 3D shape of the foot and 2D sole type analyzing individual characteristics. The subjects were 295 elderly women over 60 years of age who live in Gwangju. A foot scanner (K&I Technology $Nexcan^{(R)}$) was used to obtain three-dimensional shapes of feet and a flat bad scanner (HP Scanjet G2410) was used to obtain the two-dimensional shapes of soles. The anthropometric measuring items consisted of 59 items estimated on the right foot of each subject. Data were analyzed by various statistical methods such as factor analysis, ANOVA and cluster analysis using the SPSS 19.0 statistical program. To classify the side type of elderly women's feet, three-dimensional measurement data were analyzed for the 27 measurement items using factor analysis and 6 factors were extracted (inside height and side gradient, ankle thickness, toe height and midfoot size, lateral malleolus height, instep, and heel height and gradient). A cluster analysis resulted in three types: 36.5% belonged to Type 1 (high forefoot and high midfoot), 31.1% belonged to Type 2 (high forefoot and low midfoot), and 32.4% belonged to Type 3 (low forefoot and high midfoot). The distribution was relatively even. For the sole, 8 factors were extracted (ball width and medial foot protrusion, lateral foot protrusion, forefoot and hindfoot length ratio, ball gradient, heel size, toe breadth, lateral ball length, and foot length) and a cluster analysis resulted in three Types (Type H, Type D, and Type A). The largest proportion (42.7%) belonged to Type H, which is the same as the elderly men's case.

Three-Dimensional Printing Technology in Orthopedic Surgery (정형외과 영역에서의 삼차원 프린팅의 응용)

  • Choi, Seung-Won;Park, Kyung-Soon;Yoon, Taek-Rim
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.2
    • /
    • pp.103-116
    • /
    • 2021
  • The use of 3-dimensional (3D) printing is becoming more common, and its use is increasing in the orthopedic surgery. Currently, there are four major methods of using 3D printing technology in orthopedic surgery. First, surgical planning simulation using 3D printing model; second, patient-specific surgical instruments; third, production of customized prosthesis using 3D printing technique; fourth, patient-specific prosthesis produced by 3D printing. The areas of orthopedic surgery where 3D printing technology can be used are shoulder joint, spine, hip and pelvis, knee joints, ankle joint, and tumors. Since the diseases and characteristics handled by each area are different, the method of using 3D printing technology is also slightly different in each area. However, using 3D printing technology in all areas can increase the efficiency of surgery, shorten the surgery time, and reduce radiation exposure intraoperatively. 3D printing technology can be of great help in treating patients with particularly complex and difficult orthopedic diseases or fractures. Therefore, the orthopedic surgeon should make the most of the benefits of the 3D printing technology so that patient can be treated effectively.